scholarly journals The Structure and Mechanical Properties of Ni-Mo PM Steels with Addition of Mn And Cu

2017 ◽  
Vol 17 (1) ◽  
pp. 37-46
Author(s):  
E. Lichańska ◽  
P. Kulecki ◽  
K. Pańcikiewicz

Abstract The aim of the study was to evaluate the effect of chemical composition on the structure and mechanical properties of Mn-Ni-Mo and Ni-Mo-Cu PM steels. Pre-alloyed powder Astaloy 85Mo, diffusion alloyed powders Distaloy AQ and Distaloy AB produced by Höganäs, low carbon ferromanganese, carbonyl nickel powder T255 with three-dimensional filamentary structure and graphite CU-F have been used as the basic powders. Three mixtures with compositions of Fe-1%Mn-(0.5/1.75)%Ni-(0.5/0.85)%Mo-0.8%C and Fe-1.75%Ni-0.5%Mo-1.5%Cu-0.8%C were prepared in a Turbula mixer. Green compacts were single pressed in a steel die at 660 MPa according to PN-EN ISO 2740 standard. Sinterhardening was carried out at 1250°C in a mixture of 95% N2+5% H2 for 60 minutes. Mechanical tests (tensile, bend, hardness) and microstructural investigations were performed. Additionally, XRD and EDS analysis, fractographic investigations were carried out. The microstructures of steels investigated were mainly bainitic or bainitic-martensitic. Addition 1% Mn to Distaloy AQ based steel caused increase of tensile properties (YS from 422 to 489 MPa, UTS from 522 to 638 MPa, TRS from 901 to 1096 MPa) and decrease of plasticity (elongation from 3.65 to 2.84%).

2020 ◽  
Vol 1012 ◽  
pp. 3-8
Author(s):  
A.C.G. Silva ◽  
Hellen C.P. Oliveira ◽  
Thales Eduardo Leal ◽  
Paulo Santos Assis

The objective of this paper is to study Fe65Nb-Cu metal matrices, thus varying the content of the pre-alloyed Fe65Nb powder from 10% to 100%. Therefore, powders of Fe65Nb and Cu were used, innovating in the chemical composition of the commonly used matrices. The objective is to evaluate the substitution of Co (toxic element, commonly used) by Nb (98.2% of reserves are Brazilian). For the sintering of the samples it was used hot pressing technique. The parameters were set at: 850°C / 35MPa / 3min. The sintered bodies underwent SEM/EDS analysis and density and porosity measurements were performed. From the results it is possible to say that the compositions of (10% and 30% Fe65Nb) presented the best physical and mechanical properties. The relative density decreases for the compositions with 40%, 50% and 60% Fe65Nb is justified by the presence of fragile particles in metal matrices, since they require more energy in order to efficiently transport matter (diffusion) in a solid state.


2016 ◽  
Vol 61 (1) ◽  
pp. 109-114 ◽  
Author(s):  
E. Lichańska ◽  
M. Sułowski ◽  
A. Ciaś

The effect of chemical composition of the sintering atmosphere on the microstructure and mechanical properties of PM structural low-carbon steels is presented. The base powders were Astaloy CrL, Astaloy CrM, low carbon ferromanganese and graphite C-UF. From the base powders two mixtures with compositions of Fe-3%Mn-(1.5/3%)Cr-(0.2/0.5)%Mo-0.2%C were prepared. Following pressing in a steel rigid die, compacts were sintered at 1250°C for 60 min in a semi-closed container. 5%H2-95%N2mixture and air were the sintering atmospheres. For sintering in air, lumps of ferromanganese were placed with the compacts in the container. After sintering, half of the samples were tempered at 200°C for 60 minutes in air. Mechanical tests (tensile, bend, toughness, hardness) and microstructural investigations were performed.The microstructures of the steels were inhomogeneous, mainly ferritic-bainic. Tempering of steel based on Astaloy CrM sintered in an atmosphere of 5% H2-95% N2slightly reduced tensile strength and toughness: from 748 to 734 MPa and from 7.15 to 6.83 J/cm2, respectively. Chemical composition had a greater effect; steels based on Astaloy CrL and Astaloy CrM had tensile strengths 526-665 and 672-748 MPa, hardness 280-325 and 388-421 HV, respectively. The best properties were obtained after sintering in air of Fe-3%Mn-3%Cr-0.5%Mo-0.2%C without heat treatment: tensile strength 672 MPa, toughness 6.93 J/cm2, hardness 421.1 HV, 0.2 % offset yield strength 395 MPa.


Alloy Digest ◽  
2021 ◽  
Vol 70 (3) ◽  

Abstract Lucefin C20 is a low-carbon, non-alloy steel that is used in the normalized, cold finished, or quenched and tempered condition. It may also be used in the carburized or carbonitrided, and subsequently quench hardened and tempered, condition for parts requiring a hard wear-resistant surface, but with little need for increased mechanical properties in the core. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-209. Producer or source: Lucefin S.p.A..


2021 ◽  
Vol 56 (5) ◽  
pp. 179-185
Author(s):  
Omar A. Amin ◽  
S. A. Hassan ◽  
M. A. Sadek ◽  
M. A. Radwan ◽  
Hany A. Elazab

Epoxy resins are thermoset polymers that consist of epoxide groups in their molecular structure. It shows many attractive characteristics like strong adhesion, excellent mechanical strength, low shrinkage, excellent insulator, excellent chemical stability for acidic and basic environments, and microbial resistance due to the presence of hydroxyl groups and ether bonds and its three-dimensional structure. Many of these characteristics can be modified by adding strong bindings in the polymeric chain to give more improved characteristics. This research aims to prepare a composite material using epoxy resin and different types of fillers to achieve resistance to high kinetic energy impact. Experimental work is focused on preparing cured epoxy resin samples by using diglycidyl ether of bisphenol A (DGEBA) resin with tertiary amine as a hardener. In order to obtain different samples with different properties, we add different types of fillers, then mechanical tests are used to measure the mechanical properties of the samples. The results have proved that fiberglass is the best filler added to epoxy resins to improve its mechanical properties.


Author(s):  
Hongyan Qi ◽  
Guixiong Gao ◽  
Huixin Wang ◽  
Yunhai Ma ◽  
Hubiao Wang ◽  
...  

The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which makes it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterized the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found that (1) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (2) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (3) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increment of distance from the enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guidelines for the design of bionic machinery and materials.


2014 ◽  
Vol 59 (4) ◽  
pp. 1499-1505 ◽  
Author(s):  
M. Sulowski

Abstract The effects of processing parameters on the microstructure and mechanical properties of Fe-Mn-Cr- Mo-C PM steels are described. Pre-alloyed Astaloy CrM and Astaloy CrL, low-carbon ferromanganese and graphite powders were used as the starting materials. After pressing in rigid die, the compacts were conventionally and high temperature sintered at 1120 and 1250°C, respectively. Sintering was carried out for 60 minutes in atmospheres with different H2/N2 ratios. Cooling rate from sintering temperature was 65°C min-1 (convective cooling). The specimens were subsequently tempered at 200°C for 60 minutes in air. All specimens were tested for tensile strength (UTS), elongation (A), offset yield strength (R0:2), transverse rupture strength (TRS), impact toughness and apparent surface hardness (HV 30). After mechanical tests the microstructure of Fe-Mn-Cr-Mo-C PM steels was studied by optical microscopy. These investigations have shown that, by sintering in inexpensive and safe nitrogen-rich atmospheres, it is possible to achieve mechanical properties similar to those of specimens sintered in pure hydrogen and hydrogen-rich atmospheres.


Author(s):  
Jingjing Li ◽  
S. Jack Hu ◽  
John E. Carsley ◽  
Theresa M. Lee ◽  
Louis G. Hector ◽  
...  

The effects of different prestrain levels, paths, and subsequent annealing on the postannealing mechanical properties of AA5182-O were investigated. Aluminum sheet specimens were prestrained in uniaxial, plane strain, and equibiaxial tension to several equivalent strain levels, annealed at 350 °C for short (10 s) and long (20 min) durations and then tested for postannealing mechanical properties, including tensile properties, anisotropy, and forming limits. The tensile properties, R-values at 0, 45, and 90 deg relative to the sheet rolling direction, and forming limit diagrams (FLDs) exhibited dependencies on prestrain and annealing history. The importance of the process variables and their effects were identified via designed experiments and analysis of variance. Three-dimensional digital image correlation, which captured the onset of local necking, was employed in the FLD development. Texture in the as-received and deformed sheets was investigated with electron backscatter diffraction and provided a means for linking prestrain and static recovery or recrystallization with microstructure. This guided the understanding of the mechanical property changes observed after preforming and annealing. Ultimately, the expanded forming limit curve demonstrated the advantage of annealing in extending the formability of strained AA5182-O.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5467-5480
Author(s):  
Nasir Narlıoğlu ◽  
Tufan Salan ◽  
Mehmet Hakkı Alma

Thermal, morphological, and mechanical properties of three-dimensional (3D) printed polylactic acid (PLA) composites reinforced with different amounts of waste pine sawdust were investigated. To determine the mechanical properties of the obtained filaments, test samples were produced using a 3D printer according to the mechanical test standards. The filaments that were produced from blends that contained the wood sawdust at the highest level (20%) could be printed via a 3D printer without any problems. According to the results obtained from the mechanical tests, a decrease in the tensile strength values of the composites was observed with the addition of wood sawdust into the neat PLA polymer. On the other hand, it was determined that the flexural strength values of the wood sawdust/PLA composites significantly increased with the addition of the wood sawdust. It was concluded that the waste pine sawdust is a reasonable reinforcement material for the production of composite filament for 3D printing applications and it can be compatibly extruded with PLA polymer. Thus, sawdust can be used as a value-added waste source for the production of high-quality 3D polymeric materials.


Alloy Digest ◽  
2021 ◽  
Vol 70 (1) ◽  

Abstract Lucefin C16E and C16R are low-carbon, non-alloy case-hardening steels that are used in the carburized or carbonitrided, and subsequently quench hardened and tempered, condition. These steels are, in general, used for parts requiring a hard wearresistant surface, but with little need for increased mechanical properties in the core. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-208. Producer or source: Lucefin S.p.A.


Sign in / Sign up

Export Citation Format

Share Document