scholarly journals Mechanical Properties and Microstructure of PM Mn-Cr-Mo Steels With Low Carbon Concentration

2016 ◽  
Vol 61 (1) ◽  
pp. 109-114 ◽  
Author(s):  
E. Lichańska ◽  
M. Sułowski ◽  
A. Ciaś

The effect of chemical composition of the sintering atmosphere on the microstructure and mechanical properties of PM structural low-carbon steels is presented. The base powders were Astaloy CrL, Astaloy CrM, low carbon ferromanganese and graphite C-UF. From the base powders two mixtures with compositions of Fe-3%Mn-(1.5/3%)Cr-(0.2/0.5)%Mo-0.2%C were prepared. Following pressing in a steel rigid die, compacts were sintered at 1250°C for 60 min in a semi-closed container. 5%H2-95%N2mixture and air were the sintering atmospheres. For sintering in air, lumps of ferromanganese were placed with the compacts in the container. After sintering, half of the samples were tempered at 200°C for 60 minutes in air. Mechanical tests (tensile, bend, toughness, hardness) and microstructural investigations were performed.The microstructures of the steels were inhomogeneous, mainly ferritic-bainic. Tempering of steel based on Astaloy CrM sintered in an atmosphere of 5% H2-95% N2slightly reduced tensile strength and toughness: from 748 to 734 MPa and from 7.15 to 6.83 J/cm2, respectively. Chemical composition had a greater effect; steels based on Astaloy CrL and Astaloy CrM had tensile strengths 526-665 and 672-748 MPa, hardness 280-325 and 388-421 HV, respectively. The best properties were obtained after sintering in air of Fe-3%Mn-3%Cr-0.5%Mo-0.2%C without heat treatment: tensile strength 672 MPa, toughness 6.93 J/cm2, hardness 421.1 HV, 0.2 % offset yield strength 395 MPa.

2014 ◽  
Vol 59 (4) ◽  
pp. 1499-1505 ◽  
Author(s):  
M. Sulowski

Abstract The effects of processing parameters on the microstructure and mechanical properties of Fe-Mn-Cr- Mo-C PM steels are described. Pre-alloyed Astaloy CrM and Astaloy CrL, low-carbon ferromanganese and graphite powders were used as the starting materials. After pressing in rigid die, the compacts were conventionally and high temperature sintered at 1120 and 1250°C, respectively. Sintering was carried out for 60 minutes in atmospheres with different H2/N2 ratios. Cooling rate from sintering temperature was 65°C min-1 (convective cooling). The specimens were subsequently tempered at 200°C for 60 minutes in air. All specimens were tested for tensile strength (UTS), elongation (A), offset yield strength (R0:2), transverse rupture strength (TRS), impact toughness and apparent surface hardness (HV 30). After mechanical tests the microstructure of Fe-Mn-Cr-Mo-C PM steels was studied by optical microscopy. These investigations have shown that, by sintering in inexpensive and safe nitrogen-rich atmospheres, it is possible to achieve mechanical properties similar to those of specimens sintered in pure hydrogen and hydrogen-rich atmospheres.


2013 ◽  
Vol 651 ◽  
pp. 163-167
Author(s):  
Shu Rui Li ◽  
Xue Min Wang ◽  
Xin Lai He

The influence of Ti oxide on the toughness of heat affected zone for low carbon bainitic steels has been investigated. The optical microscope, SEM and TEM were used to analyze the composition, size and distribution of the inclusions, and the microstructure and mechanical properties after welding thermal simulation were also investigated. The effect of Ti oxide inclusion on the transformation of acicular ferrite has also been studied. The results show that after the melting with Ti dioxide technique the inclusion is complex, in the core is Ti oxides about 1-3 micron and around it is MnS. It has been found the acicular ferrite can nucleate at the inclusions and the Ti oxide inclusion will promote the nucleation of acicular ferrite, and the acicular ferrite will block the growth of bainite. Therefore by introducing the Ti oxide in the steels the microstructure of HAZ could be refined markedly therefore the toughness of HAZ can be improved evidently.


1988 ◽  
Vol 74 (12) ◽  
pp. 2323-2329 ◽  
Author(s):  
Masahiko ODA ◽  
Hiroshi KUBO ◽  
Osamu AKISUE ◽  
Kichi NAKAZAWA

2015 ◽  
pp. 405-437

Abstract Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.


Sign in / Sign up

Export Citation Format

Share Document