Interfacial properties and fatigue behavior of carbon fiber epoxy laminate composites

2013 ◽  
Vol 33 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Hsien-Tang Chiu ◽  
Yung-Lung Liu ◽  
Kuo-Chuan Liang ◽  
Peir-An Tsai

Abstract The study elucidated the relationship between the stacking sequence and physical properties, by investigating mechanical properties, fatigue life and the morphology, after fatigue fracture of carbon fiber/epoxy composites. The results show that the unidirectional carbon fiber laminate has the maximum tensile stress. Moreover, the laminate with ±45° plies can improve the tensile strain. The fatigue life of all specimens was shorter than 103 cycles under high cyclic stress level, and longer than 106 cycles under low cyclic stress level. Laminates with [908]s stacking sequence had the shortest fatigue life under high and low cyclic stress, while the unidirectional carbon fiber laminate had the highest fatigue life. A number of fatigue damage models, including delaminating, matrix cracking and fiber failure, have been identified by scanning electron microscopy (SEM). The SEM micrographs showed that the morphology on the cross section, after fatigue fracture, was significantly correlated to the stacking sequence.

2021 ◽  
Vol 2125 (1) ◽  
pp. 012036
Author(s):  
Yi-Er Guo ◽  
De-Guang Shang ◽  
Lin-Xuan Zuo ◽  
Lin-Feng Qu ◽  
Di Cai ◽  
...  

Abstract In this paper, the static and fatigue behavior of carbon fiber/Epoxy composites laminate are investigated. The degradation and damage evolution in the composite laminate tests process were monitored using the acoustic emission technique. The acoustic signals collected during the tests were analyzed. The results of the acoustic emission signal accumulated during static and fatigue tests are compared in order to identify the accumulated damage mechanism of carbon fiber/Epoxy composites laminate. The accumulated damage is manifested by matrix cracking, fiber/matrix interface debonding, shear failure, delamination, and fiber break.


Author(s):  
G. P. Tandon ◽  
R. Y. Kim

One of the more formidable problems in composite research is the study of delamination and other failure modes in the vicinity of a circular hole in a laminate, e.g., a circular cut-out in a structure. In this problem, the singularity varies around the periphery of the hole as well as through the thickness of the laminate. Under tensile loading, the early failure modes in this problem consist of transverse cracks in various layers, so that delamination occurs only after other damage is precipitated, followed by fiber breakage leading to failure. A literature review of past work clearly shows that mechanical testing with simultaneous AE monitoring is a fruitful technique to study damage accumulation in composite systems. The acoustic-ultrasonic (AU) testing combines the high sensitivity of ultrasonics to internal damage and the method of acoustic emission technique to characterize elastic waves. As damage accumulates in the specimen along the wave path, the net internal damping increases and changes the wave parameters such as peak amplitude, duration, etc. accordingly. Additionally, a range of experimental results over the last decade has further shown that the mechanical deformation and electric resistance of carbon fiber reinforced polymers are coupled, so that the material is inherently a sensor of its own damage state. The monitoring of electric resistance and capacitance changes, linked to the modifications of the conduction paths in the composite, allows the detection of damage growth. It seems logical that a natural extension of these different approaches is the determination of damage mode, e.g., fiber breakage, matrix cracking or delamination, and damage size and position, based on combined measurements from these techniques. These multiple techniques will serve a two-fold purpose, namely, enable comparison as well as complement each other in case of incomplete damage mapping from one set of sensors For this study, we will consider carbon fiber-reinforced toughened bismaleimide, (IM7/5250-4) quasi-isotropic laminate coupons 12” long, 4” wide with hole at the center under tension. Figure 1 shows the damage which occurs around a 0.75” hole in a [45/0/-45/90]s graphite epoxy laminate obtained by radiography after unloading the test specimen from an applied stress of 50 Ksi. The failure stress for this laminate was 56.4 Ksi. Damage in the form of ply cracks in the 90, 45, and −45 plies and delamination around hole edges is clearly evident. The radiograph taken after unloading from a 50 Ksi stress level clearly shows the location and extent of damage, but contains no specific information about the sequence and the timing of damage events. Figure 2 shows stress-strain curves obtained from strain gages mounted at various distances away from the hole edge along with the far-field value. The stress-strain curves provide useful information regarding the initiation as well as the growth of the damage, as evidenced by jump in strain levels and onset of nonlinearity. Damage initiation is first picked up by the strain gage which is mounted closest to the hole edge at a stress level of 21 Ksi. Subsequently, other strain gages begin to sense damage growth as the applied stress level increases. The strain gage data provides useful information regarding initiation, growth and severity of damage, but it is difficult to assign specific damage modes and their location to the measurements. This example clearly demonstrates the needs, with the associated benefits, of the multiple sensor approach. In this work, three different hole sizes (0.25”, 0.5” and 0.75”) will be investigated. This example problem will enable us to examine the combined effects of cut-outs, matrix cracking, delamination and fiber breakage on the ability of various NDE techniques to assess damage. The development and growth of damage in the composite laminate with a hole under compression will be markedly different than in tension. Under compression, the major damage modes are fiber buckling and delamination, and will also be investigated.


1997 ◽  
Vol 119 (4) ◽  
pp. 422-428
Author(s):  
B. P. Sanders ◽  
S. Mall ◽  
L. B. Dennis

A study was conducted to investigate the fatigue behavior of a cross-ply metal matrix composite subjected to fully-reversed, strain-controlled fatigue cycling at elevated temperature. The stress-strain response, maximum and minimum stresses, and modulus during cycling were analyzed to characterize the macro-mechanical behavior. Additionally, microscopy and fractography were conducted to identify damage mechanisms. Damage always initiated in the 90 deg plies, but the governing factor in the fatigue life was damage in the 0 deg plies. The dominant failure mode was fracturing of fibers in the 0 deg plies when the maximum strain was greater than 0.55 percent, but the dominant failure mode was matrix cracking when the maximum strain was less than 0.55 percent. Combining the fatigue life data with the macro-mechanical and microscopic observations, a fatigue life diagram was developed and partitioned into three regions. These regions showed relationships between the maximum applied strain and the dominant damage mechanisms. Also, on a strain range basis, the fatigue lives of the specimens tested under the strain-controlled mode in this study were compared with its counterpart under the load-controlled mode of the previous study. It was found that the fatigue lives for these two conditions were the same within the experimental scatter.


2017 ◽  
Vol 51 (20) ◽  
pp. 2889-2897 ◽  
Author(s):  
Ali Amiri ◽  
Matthew N Cavalli ◽  
Chad A Ulven

Carbon fiber-reinforced polymers are being used in advanced structural applications such as aerospace, automotive, and naval industries. Therefore, there is a rising need for predicting their fatigue life and improving their fatigue behavior. In this study, the fatigue behavior and changes in flexural modulus of bidirectional carbon fiber-reinforced polymers due to cyclic fully reversed bending are investigated. A unique fixture is designed and manufactured to perform fully reversed four-point bending fatigue tests on (0 °/90 °)15 carbon/polyester specimens with a stress ratio of R = −1 and frequency of 5 Hz. The expected downward trend in fatigue life with increasing maximum applied stress was observed in the S–N curves of samples. Based on the decay in the flexural modulus of the specimens, a modified exponential model is proposed to predict the life of carbon fiber-reinforced polymers under fully reversed bending. The empirical constants in the model are calculated based on the results of experiments. The model is applied to predict the fatigue life of the samples that did not fail during the tests and cycle-to-failure of the specimens are found.


2021 ◽  
Vol 73 (6) ◽  
pp. 922-928
Author(s):  
Ziao Huang ◽  
Xiaoshan Liu ◽  
Guoqiu He ◽  
Zhiqiang Zhou ◽  
Bin Ge ◽  
...  

Purpose This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path. Design/methodology/approach By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer. Findings In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content. Originality/value There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.


Sign in / Sign up

Export Citation Format

Share Document