Analysis of heat generation characteristics in ultrasonic welding of plastics under low amplitude conditions

2016 ◽  
Vol 36 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Wei Han ◽  
Jiping Liu ◽  
Daotong Chong ◽  
Junjie Yan

Abstract Heat generation mechanism in processes of ultrasonic welding of plastics was not fully solved. Experiment results showed that increasing the amplitude increased the energy dissipated with the exception of low amplitudes, but no detailed analysis can be found in explaining this problem. This study proposed to investigate the heat-generating processes in such a condition with a new physically based model by solving the N-S equations. The increasing mean temperature profiles and the final temperature patterns are well agreed with previous researches. The results predicted that the distribution of heat generated in the welding zone was non-uniform. The highest temperature area changed its position with the variation of time and the amplitude of vibration. In low amplitude conditions, energy dissipation was found to firstly increase with a slight fluctuation, then decreased when the driven amplitude was larger than 5 μm. And different temperature distribution patterns were observed at these turning points.

2019 ◽  
Vol 19 (11) ◽  
pp. 2477-2495
Author(s):  
Ronda Strauch ◽  
Erkan Istanbulluoglu ◽  
Jon Riedel

Abstract. We developed a new approach for mapping landslide hazards by combining probabilities of landslide impacts derived from a data-driven statistical approach and a physically based model of shallow landsliding. Our statistical approach integrates the influence of seven site attributes (SAs) on observed landslides using a frequency ratio (FR) method. Influential attributes and resulting susceptibility maps depend on the observations of landslides considered: all types of landslides, debris avalanches only, or source areas of debris avalanches. These observational datasets reflect the detection of different landslide processes or components, which relate to different landslide-inducing factors. For each landslide dataset, a stability index (SI) is calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across our study domain in the North Cascades National Park Complex (NOCA), Washington, USA. A continuous function is developed to relate local SI values to landslide probability based on a ratio of landslide and non-landslide grid cells. The empirical model probability derived from the debris avalanche source area dataset is combined probabilistically with a previously developed physically based probabilistic model. A two-dimensional binning method employs empirical and physically based probabilities as indices and calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the joint probability and the physically based model bin probability is used as a weight to adjust the original physically based probability at each grid cell given empirical evidence. The resulting integrated probability of landslide initiation hazard includes mechanisms not captured by the infinite-slope stability model alone. Improvements in distinguishing potentially unstable areas with the proposed integrated model are statistically quantified. We provide multiple landslide hazard maps that land managers can use for planning and decision-making, as well as for educating the public about hazards from landslides in this remote high-relief terrain.


Author(s):  
Abderrazzak El Boukili

Purpose – The purpose of this paper is to provide a new three dimension physically based model to calculate the initial stress in silicon germanium (SiGe) film due to thermal mismatch after deposition. We should note that there are many other sources of initial stress in SiGe films or in the substrate. Here, the author is focussing only on how to model the initial stress arising from thermal mismatch in SiGe film. The author uses this initial stress to calculate numerically the resulting extrinsic stress distribution in a nanoscale PMOS transistor. This extrinsic stress is used by industrials and manufacturers as Intel or IBM to boost the performances of the nanoscale PMOS and NMOS transistors. It is now admitted that compressive stress enhances the mobility of holes and tensile stress enhances the mobility of electrons in the channel. Design/methodology/approach – During thermal processing, thin film materials like polysilicon, silicon nitride, silicon dioxide, or SiGe expand or contract at different rates compared to the silicon substrate according to their thermal expansion coefficients. The author defines the thermal expansion coefficient as the rate of change of strain with respect to temperature. Findings – Several numerical experiments have been used for different temperatures ranging from 30 to 1,000°C. These experiments did show that the temperature affects strongly the extrinsic stress in the channel of a 45 nm PMOS transistor. On the other hand, the author has compared the extrinsic stress due to lattice mismatch with the extrinsic stress due to thermal mismatch. The author found that these two types of stress have the same order (see the numerical results on Figures 4 and 12). And, these are great findings for semiconductor industry. Practical implications – Front-end process induced extrinsic stress is used by manufacturers of nanoscale transistors as the new scaling vector for the 90 nm node technology and below. The extrinsic stress has the advantage of improving the performances of PMOSFETs and NMOSFETs transistors by enhancing mobility. This mobility enhancement fundamentally results from alteration of electronic band structure of silicon due to extrinsic stress. Then, the results are of great importance to manufacturers and industrials. The evidence is that these results show that the extrinsic stress in the channel depends also on the thermal mismatch between materials and not only on the material mismatch. Originality/value – The model the author is proposing to calculate the initial stress due to thermal mismatch is novel and original. The author validated the values of the initial stress with those obtained by experiments in Al-Bayati et al. (2005). Using the uniaxial stress generation technique of Intel (see Figure 2). Al-Bayati et al. (2005) found experimentally that for 17 percent germanium concentration, a compressive initial stress of 1.4 GPa is generated inside the SiGe layer.


1999 ◽  
Vol 15 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Alessandro Sarti ◽  
Roberto Gori ◽  
Claudio Lamberti

Author(s):  
Hang Li ◽  
Hongseok Choi ◽  
Chao Ma ◽  
Jingzhou Zhao ◽  
Hongrui Jiang ◽  
...  

Process physics understanding, real time monitoring, and control of various manufacturing processes, such as battery manufacturing, are crucial for product quality assurance. While ultrasonic welding has been used for joining batteries in electric vehicles (EVs), the welding physics, and process attributes, such as the heat generation and heat flow during the joining process, is still not well understood leading to time-consuming trial-and-error based process optimization. This study is to investigate thermal phenomena (i.e., transient temperature and heat flux) by using micro thin-film thermocouples (TFTC) and thin-film thermopile (TFTP) arrays (referred to as microsensors in this paper) at the very vicinity of the ultrasonic welding spot during joining of three-layered battery tabs and Cu buss bars (i.e., battery interconnect) as in General Motors's (GM) Chevy Volt. Microsensors were first fabricated on the buss bars. A series of experiments were then conducted to investigate the dynamic heat generation during the welding process. Experimental results showed that TFTCs enabled the sensing of transient temperatures with much higher spatial and temporal resolutions than conventional thermocouples. It was further found that the TFTPs were more sensitive to the transient heat generation process during welding than TFTCs. More significantly, the heat flux change rate was found to be able to provide better insight for the process. It provided evidence indicating that the ultrasonic welding process involves three distinct stages, i.e., friction heating, plastic work, and diffusion bonding stages. The heat flux change rate thus has significant potential to identify the in-situ welding quality, in the context of welding process monitoring, and control of ultrasonic welding process. The weld samples were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to study the material interactions at the bonding interface as a function of weld time and have successfully validated the proposed three-stage welding theory.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 1-11 ◽  
Author(s):  
E. A. Varouchakis ◽  
G. V. Giannakis ◽  
M. A. Lilli ◽  
E. Ioannidou ◽  
N. P. Nikolaidis ◽  
...  

Abstract. Riverbank erosion affects river morphology and local habitat, and results in riparian land loss, property and infrastructure damage, and ultimately flood defence weakening. An important issue concerning riverbank erosion is the identification of the vulnerable areas in order to predict river changes and assist stream management/restoration. An approach to predict areas vulnerable to erosion is to quantify the erosion probability by identifying the underlying relations between riverbank erosion and geomorphological or hydrological variables that prevent or stimulate erosion. In the present work, a statistical methodology is proposed to predict the probability of the presence or absence of erosion in a river section. A physically based model determines the locations vulnerable to erosion by quantifying the potential eroded area. The derived results are used to determine validation locations for the evaluation of the statistical tool performance. The statistical tool is based on a series of independent local variables and employs the logistic regression methodology. It is developed in two forms, logistic regression and locally weighted logistic regression, which both deliver useful and accurate results. The second form, though, provides the most accurate results as it validates the presence or absence of erosion at all validation locations. The proposed tool is easy to use and accurate and can be applied to any region and river.


2007 ◽  
Vol 550 ◽  
pp. 199-204
Author(s):  
N. Zaafarani ◽  
Franz Roters ◽  
Dierk Raabe

This work studies the rotations of a (111) Cu single crystal due to the application of a conical nanoindent. With the aid of a joint high-resolution field emission SEM-EBSD set-up coupled with serial sectioning in a focused ion beam (FIB) system in the form of a cross-beam 3D crystal orientation microscope (3D EBSD) a 3D rotation map underneath the indent could be extracted. When analyzing the rotation directions in the cross section planes (11-2) perpendicular to the (111) surface plane below the indenter tip we observe multiple transition regimes with steep orientation gradients and changes in rotation direction. A phenomenological and a physically-based 3D elastic-viscoplastic crystal plasticity model are implemented in two finite element simulations adopting the geometry and boundary conditions of the experiment. While the phenomenological model predicts the general rotation trend it fails to describe the fine details of the rotation patterning with the frequent changes in sign observed in the experiment. The physically-based model, which is a dislocation density based constitutive model, succeeded to precisely predict the crystal rotation map compared with the experiment. Both simulations over-emphasize the magnitude of the rotation field near the indenter relative to that measured directly below the indenter tip. However, out of the two models the physically-based model reveals better crystal rotation angles


Sign in / Sign up

Export Citation Format

Share Document