Preparation and characterization of poly(ethylene 2,5-furandicarboxylate/nanocrystalline cellulose composites via solvent casting

2017 ◽  
Vol 37 (9) ◽  
pp. 869-878 ◽  
Author(s):  
Amandine Codou ◽  
Nathanaël Guigo ◽  
Jesper Gabriël van Berkel ◽  
Ed de Jong ◽  
Nicolas Sbirrazzuoli

AbstractThe effect of nanocrystalline cellulose dispersion on the nonisothermal crystallization of poly(ethylene 2,5-furandicarboxylate) (PEF) has been investigated by means of solvent casting. The cellulose dispersion plays a significant role on the crystallization temperature, thus dispersive equipments of increasing energies were employed to improve the cellulose particles disaggregation. Therefore, ultra-sonic bath, ultra-sonication, and ultra-turrax were used to disperse cellulose nanocrystals in 1,1,1,3,3,3-hexafluoro-2-propanol. Dissolved separately in the same solvent, PEF was then poured into the cellulose suspension before casting. The cellulose whiskers were inspected by transmission electron microscopy. Differential scanning calorimetry was used to measure the crystallization temperature, while scanning electron microscopy visualized the cellulose dispersion at the fracture surface. After investigation on the interaction of cellulose/PEF via Fourier transform infrared spectroscopy, the thermal stability of the blends was measured by means of thermogravimetric analysis.

nano Online ◽  
2018 ◽  
Author(s):  
Amandine Codou ◽  
Nathanaël Guigo ◽  
Jesper Gabriël van Berkel ◽  
Ed de Jong ◽  
Nicolas Sbirrazzuoli

2018 ◽  
Vol 32 (8) ◽  
pp. 1078-1091 ◽  
Author(s):  
Sibel Erol Dağ ◽  
Pınar Acar Bozkurt ◽  
Fatma Eroğlu ◽  
Meltem Çelik

A series of polystyrene (PS)/unmodified Na-montmorillonite (Na-MMT) composites were prepared via in situ radical polymerization. The prepared composites were characterized using various techniques. The presence of various functional groups in the unmodified Na-MMT and PS/unmodified Na-MMT composite was confirmed by Fourier transform infrared spectroscopy. Morphology and particle size of prepared composites was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the XRD and TEM results, the interlayer spacing of MMT layers was expanded. SEM images showed a spongy and porous-shaped morphology of composites. TEM revealed the Na-MMT intercalated in PS matrix. The thermal stability of PS/unmodified Na-MMT composites was significantly improved as compared to PS, which is confirmed using thermogravimetric analysis (TGA). The TGA curves indicated that the decomposition temperature of composites is higher at 24–51°C depending on the composition of the mixture than that of pure PS. The differential scanning calorimetry (DSC) results showed that the glass transition temperature of composites was higher as compared to PS. The moisture retention, water uptake, Brunauer–Emmett–Teller specific surface area, and specific pore volume of composites were also investigated. Water resistance of the composites can be greatly improved.


2020 ◽  
Vol 10 (01) ◽  
pp. 1-4
Author(s):  
ABM Helal Uddin ◽  
Abdelkader Hassani ◽  
Abul K. Azad ◽  
Hamid H. Enezei ◽  
Siti A. Hussain

The current study aims to improve drug release properties of orotic acid loaded with chitosan inclusion complex (OA/CS). The OA/CS inclusion complex was synthesized using the freeze-drying technique. The characterization of inclusion OA/CS was carried out using fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), zeta sizer, and transmission electron microscopy (TEM). Furthermore, the size of OA/CS ranged between 58 nm and 200 nm, and the zeta potential was 30 mV. Thus, this study indicates that OA/CS has a promising future to develop a carrier for drug delivery systems further.


2020 ◽  
Vol 12 (4) ◽  
pp. 22-29
Author(s):  
KanchanV Zade ◽  
Alok Pal Jain

Phytosome is a complex between natural active ingredient and a phospholipid. Further, phytosomes been applied to many popular herbal extracts or active molecules for augmenting oral dissolution. Therefore, in present investigation, orally administered Baicalein, atype of flavanoids, is poorly absorbed, and shows suboptimal dissolution. The phytosomes encapsulating baicalein (1:1 Mm) were prepared by reverse phase evaporation method followed by lyophilization. Transmission electron microscopy (TEM) analysis revealed that phytosomes were almost spherical in shape with particle size below 100 nm. The Powder ex-ray diffraction (PXRD) and differential scanning calorimetry (DSC) demonstrated that Baicalein loaded phytosomes were amorphous in nature. Amorphization of therapeutic moiety leads to improvement in dissolution. In conclusion, epigallocatechin loaded phytosomes exhibited promising results and warrant further in vitro andin vivo investigations under a set of stringent parameters for transforming in to a clinically viable products.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xiaozhou Su ◽  
Lei Li ◽  
Weihan Huang

Complex nanomicelles were prepared by sericin and type A gelatin with molecular weight of 5789 Da and 128664 Da separately. The assembling conditions were as follows: mass ratio (sericin/gelatin) was 1 : 1, protein concentration was 0.5%, temperature was 35°C, and assembling time was 18 hours. Scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were conducted to observe and characterize the complex nanomicelles. Results showed that the complex sericin/gelatin micelles was a kind of nanospindle micelles. The micelles had high electrochemical stability, thermal stability, antidilution stability, and storage stability.


2011 ◽  
Vol 364 ◽  
pp. 398-401
Author(s):  
Johari Md Salleh ◽  
Aziah Buang Nor ◽  
Muhammad Zamir Othman

Manganese dioxide nanostructered (MnO2) was coated onto carbon nanotubes (CNTs) by simple immersion of the CNTs into a KMnO4 aqueous solution. The morphology of the CNTs before and after MnO2 deposition was examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The superfine coral-like MnO2 deposited and fully covered on the CNTs surface at pH 8. At pH 2 and 6 the MnO2 deposited as the superfine nanorod structure. The superfine MnO2 phase was identified as Birnessite-type MnO2 by X-ray powder diffraction and FESEM. The thermal stability of the superfine nanostructure MnO2 coated CNTs is increase based on the TGA with the weight loss of 4% at 400°C to 900°C.


Sign in / Sign up

Export Citation Format

Share Document