Fabrication and characterization of organic semiconductor for electromagnetic interference shielding material

2011 ◽  
Vol 31 (4) ◽  
Author(s):  
Habibun Nabi Muhammad Ekramul Mahmud ◽  
Anuar Kassim

Abstract Conducting polymer films produced by electropolymerization technique are highly conductive, simple, and suitable for use especially in electronic devices. An attempt has been made to produce polypyrrole-poly(vinyl alcohol) (PPy-PVA) conducting polymer composite films using 0.1 m p-toluene sulfonate dopant at a potential of 1.2 V (vs. standard calomel electrode) on indium tin oxide glass electrode. The potential application of the prepared PPy-PVA conducting polymer composite films as an electromagnetic interference (EMI) shielding material has been investigated in the present study. The EMI shielding effectiveness of PPy-PVA composite films prepared from different experimental conditions was analyzed in the microwave frequency range of 8–12 GHz. The shielding effectiveness of 45.67–35.7 dB has been demonstrated by PPy-PVA conducting polymer composite films, which appears to be very attractive in any EMI shielding applications where a minimum shielding effectiveness of 35 dB is required.

2020 ◽  
Vol 9 (1) ◽  
pp. 768-788
Author(s):  
Emayaruba G. Barathi Dassan ◽  
Aslina Anjang Ab Rahman ◽  
Mohd Shukur Zainol Abidin ◽  
Hazizan Md Akil

AbstractThe growth of the application of electronic devices has created a new form of pollution known as noise or radio frequency interference, electromagnetic radiation, or electromagnetic interference (EMI), which results in the malfunction of equipment. A new carbon-based polymer composite has been unlocked through the discovery of polymer composites. Carbon nanotubes (CNTs) have shown potential as reinforcement fillers in polymer to enhance an EMI shielding material owing to their large specific surface area, well-defined 3D networking structure, and unique electronic structure. The main focus of this review is the role of CNT as fillers in intrinsic conducting polymer and conducting polymer composite. The factors that influence EMI shielding performance are also included in this review. The roles of the size; shape; and electronic, mechanical, and chemical properties of nanomaterials in tuning the EMI shielding effectiveness of polymer hybrid are emphasized. The structural design of CNT polymer composite has been reviewed as well. Future research direction has been proposed to overcome the current technological limitations and realize the most advanced EMI shielding materials for future use. The composites have a potential to replace traditional shielding materials owing to their advantageous properties.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36498-36506 ◽  
Author(s):  
Sandeep K. Marka ◽  
Bashaiah Sindam ◽  
K. C. James Raju ◽  
Vadali V. S. S. Srikanth

An excellent electromagnetic interference shielding effectiveness of ∼19.5 dB was measured for a 1 mm thick flexible few-layered graphene (FLG)/PVA composite sheet owing to the formation of network-like features by FLG in the PVA matrix.


2000 ◽  
Vol 29 (2) ◽  
pp. 92-93 ◽  
Author(s):  
Masahiro Suzuki ◽  
Naomi Takada ◽  
Toshiki Koyama ◽  
Satoshi Kobayashi ◽  
Mutsumi Kimura ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 18758-18766 ◽  
Author(s):  
Yunping Hu ◽  
Ping Tang ◽  
Longwei Li ◽  
Junyu Yang ◽  
Xigao Jian ◽  
...  

Sandwich structure can be induced to achieve excellent electromagnetic interference shielding effectiveness (EMI SE) as is well known.


2016 ◽  
Vol 4 (19) ◽  
pp. 4193-4203 ◽  
Author(s):  
Fang Fang ◽  
Yuan-Qing Li ◽  
Hong-Mei Xiao ◽  
Ning Hu ◽  
Shao-Yun Fu

The superiority of layer-structured Ag-NW/PANI composite films over the plain-structured in electrical conductivity and electromagnetic interference shielding.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yongqiang Guo ◽  
Hua Qiu ◽  
Kunpeng Ruan ◽  
Yali Zhang ◽  
Junwei Gu

AbstractThe development of lightweight and integration for electronics requires flexible films with high thermal conductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution. Herein, the hierarchical design and assembly strategy was adopted to fabricate hierarchically multifunctional polyimide composite films, with graphene oxide/expanded graphite (GO/EG) as the top thermally conductive and EMI shielding layer, Fe3O4/polyimide (Fe3O4/PI) as the middle EMI shielding enhancement layer and electrospun PI fibers as the substrate layer for mechanical improvement. PI composite films with 61.0 wt% of GO/EG and 23.8 wt% of Fe3O4/PI exhibits high in-plane thermal conductivity coefficient (95.40 W (m K)−1), excellent EMI shielding effectiveness (34.0 dB), good tensile strength (93.6 MPa) and fast electric-heating response (5 s). The test in the central processing unit verifies PI composite films present broad application prospects in electronics fields.


NANO ◽  
2018 ◽  
Vol 13 (06) ◽  
pp. 1850061 ◽  
Author(s):  
Shaowei Lu ◽  
Yaoyao Bai ◽  
Jijie Wang ◽  
Chenxu Zhao ◽  
Wei Li ◽  
...  

Ultrathin multi-walled carbon nanotubes (MWCNTs) buckypapers inserted with Mn nanopowder were fabricated via vacuum filtration method, at a lower manufacturing cost and easier operation. The buckypapers were characterized structurally using scanning electron microscopy, energy-dispersive spectrometer and X-ray diffraction. Electromagnetic interference (EMI) shielding effectiveness (SE) of MWCNTs buckypapers inserted with Mn nanopowder (0–30[Formula: see text]wt.%) were tested in X-band (8.2–12.4[Formula: see text]GHz). When the blended Mn nanopowder content is 20[Formula: see text]wt.%, the buckypaper exhibits much higher EMI SE of average value up to 42[Formula: see text]dB with the thickness of only 0.11[Formula: see text]mm. Further, this buckypaper is flexible and lightweight, and can be integrated with resin matrix composites. Thus, the results and techniques promise a simple and effective approach to achieve lightweight and ultrathin composite films for a wide application prospect in the field of EMI shielding and microwave absorption.


NANO ◽  
2019 ◽  
Vol 14 (06) ◽  
pp. 1950075 ◽  
Author(s):  
Shaowei Lu ◽  
Yaoyao Bai ◽  
Jijie Wang ◽  
Dandan Chen ◽  
Keming Ma ◽  
...  

As the portable device hardware has been increasing at a noticeable rate, ultrathin flexible materials with the combination of high thermal conductivity and excellent electromagnetic interference (EMI) shielding performance are urgently needed. Here, we fabricated ethylene propylene diene monomer rubber with different loading graphene nanoplatelets (GnPs/EPDM) by a cost-efficient approach, which combines mixing, ultrasonication and compression. Further investigation demonstrates that the 8[Formula: see text]wt.% GnPs/EPDM with only 0.3[Formula: see text]mm in thickness shows excellent electrical conductivity (28.3[Formula: see text]S/m), thermal conductivity (0.79[Formula: see text]W/m[Formula: see text]K) and good mechanical properties. Besides, the 8[Formula: see text]wt.% GnPs/EPDM exhibits an EMI shielding effectiveness (SE) up to 33[Formula: see text]dB in the X-band (8.2–12.4[Formula: see text]GHz) and 35[Formula: see text]dB in the Ku-band (12.4–18[Formula: see text]GHz), superior to most of the reported rubber matrix. Additionally, the GnPs/EPDM shows excellent flexibility and stability with 95% and 94% retention of EMI SE even after repeated bending for 5000 times and corrosion (under 5% NaCl environment) for a week. Our flexible EMI shielding material will benefit the fast-growing next-generation commercial portable flexible electrons.


MRS Advances ◽  
2019 ◽  
Vol 4 (38-39) ◽  
pp. 2153-2159 ◽  
Author(s):  
Eugene Zakar ◽  
Theodore Anthony ◽  
Madan Dubey

Abstract:Spin coating and drop casting are viable methods for rapid and low-cost additive manufacturing of components for flexible devices and sensors. We investigated the cumulative effects of layering a conductive polymer composite 2 wt% MWCNT filler in PEDOT:PSS on a Mylar substrate for application to electromagnetic interference (EMI) shielding. The optical transmittace of spin coated composite layers is 90%, 45%, and 20% with a thickness of 0.05 µm, 0.15 µm, and 0.45 µm respectively. Drop cast composite layers have 0% transmittance due to their much greater starting thickness of 4.4 µm. The addition of isopropyl alcohol (IPA) to the solution mixture and substrate heating to 40 °C improves the conductivity, and drying time of the cured composite layers to 10 min. This study shows that the cumulative effects of composite layering are additive, but the electrical properties do not scale the same way. A significant increase in the EMI SE is mainly attributed to the enhanced electrical conductivity of the composite. The insertion of a 50 µm gap in between two 15 µm composite layers accentuates the EMI shielding effectiveness (SE) significantly to a peak of 21 dB within a narrow frequency range in the Ku-band tested.


Sign in / Sign up

Export Citation Format

Share Document