scholarly journals S-Genotype Diversity in Wild Cherry Populations in the Czech Republic

2017 ◽  
Vol 48 (2) ◽  
pp. 92-97
Author(s):  
K. Sharma ◽  
J. Korecký ◽  
E.D. Patrizio Soldateschi ◽  
P. Sedlák

Abstract Wild cherry (Prunus avium L.) S-genotyping is aimed to uncover and thus make it possible to select appropriate genotypes applicable in establishing commercial plantations and advanced forest tree breeding activities. The general and long-term aim is to increase genetic gain in economically valuable traits while maintaining sufficient genetic variability (represented by diverse S-alleles in population). We genotyped 123 accessions from wild cherry growing areas in the Czech Republic using polymerase chain reaction based length polymorphisms detection of S-RNase and SFB genes. The studied plant material revealed 18 different S-haplotypes, 54 S-genotypes corresponded to 25 defined incompatibility groups of cultivated sweet cherry. Eighteen unique S-genotypes were designated to group ‘0’ as a universal pollinator. Eleven new incompatibility groups were found out, of which four were cross-compatible with sweet cherry cultivars. The most frequent was a new incompatibility group S14S21 followed by the group S12S14. The haplotypes S14 (13%) and S1 (10%) were the most frequent whereas S20 was less frequent in the wild populations of cherry. The present study of S-genotyping in the wild cherry population reveals the genetic diversity structure of natural populations and hopefully will help define the breeding strategy including more accurate planning activities such as the optimal seed design of orchards.

2008 ◽  
Vol 53 (No. 2) ◽  
pp. 57-65 ◽  
Author(s):  
M. Hajnala ◽  
M. Lstibůrek ◽  
J. Kobliha

A 6-year-old clonal trial with 13 clones of wild cherry (<i>Prunus avium</i> L.) was evaluated during the summer of 2004 at 6 different sites in the Czech Republic. Observed traits were the stem height, stem diameter, health status, and mortality. The mixed linear model was implemented with either independent or the autoregressive error structure. The later provided better fit to the data. At this age, only one clone outperformed the remaining ones in volume production. Suggestions for future research activities are provided that should lead to the establishment of long-term breeding programs with wild cherry in the Czech Republic.


2019 ◽  
Vol 48 (No. 5) ◽  
pp. 202-218 ◽  
Author(s):  
J. Kobliha

The paper widely introduces European experience in wild cherry breeding because it is the first one from a prepared series of articles aimed at wild cherry breeding in the Czech Republic. Beginnings of wild cherry breeding program for the Czech forestry are described. Plus trees were certified, seed orchards, clone archives, progeny and clonal tests were established. Clones were tested for fl owering of grafts in reproductive plantations. Progenies and clones were tested for growth parameters in progeny and clonal tests. Progenies and clones in every breeding plantation were tested for damage by aphids.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yeonhwa Jo ◽  
Hoseong Choi ◽  
Jin Kyong Cho ◽  
Won Kyong Cho

Cherry virus F (CVF) is a tentative member of the genus Fabavirus in the family Secoviridae, consisting of two RNA segments (Koloniuk et al. 2018). To date, CVF has been documented in only sweet cherry (Prunus avium) in the Czech Republic (Koloniuk et al. 2018), Canada, and Greece. In May 2014, we collected leaf samples from four symptomatic (leaf spots and dapple fruits) and two asymptomatic Japanese plum cultivars (Sun and Gadam) grown in an orchard in Hoengseong, South Korea, to identify viruses and viroids infecting plum trees. Total RNA from individual plum trees was extracted using two commercial kits: Fruit-mate for RNA Purification Kit (Takara, Shiga, Japan) and RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). We generated six mRNA libraries from the six different plum cultivars for RNA-sequencing using the TruSeq RNA Library Preparation Kit v2 (Illumina, CA, U.S.A.) as described previously (Jo et al. 2017). The mRNA libraries were paired-end (2 X 100 bp) sequenced with a HiSeq 2000 system (Macrogen, Seoul, Korea). The raw sequence reads were de novo assembled by Trinity program v. 2.8.6, with default parameters (Haas et al. 2013). The assembled contigs were subjected to BLASTX search against the non-redundant protein database in NCBI. Of the two asymptomatic cultivars, the transcriptome of asymptomatic plum cv. Gadam contained five contigs specific to CVF. Two and three contigs were specific to CVF RNA1 (2,571 reads, coverage 42.15%) and RNA2 (2,025 reads, coverage 53.04%), respectively. The size of these five contigs ranged from 241 to 5,986 bp. Contigs of 5,986 and 3,867 bp in length, referred to as CVF isolate Gadam RNA1 (GenBank MN896996) and RNA2 (GenBank MN896995), respectively, were subjected to BLASTP search against NCBI’s non-redundant protein database. The results showed that the polyprotein sequences of RNA1 and RNA2 shared 95.3% and 93.11% amino acid identities with isolates SwC-H_1a from the Czech Republic (GenBank acc. no. AWB36326) and Stac-3B_c8 from Canada (AZZ10055), respectively. To confirm the infection of CVF in cv. Gadam, RT-PCR was conducted using CVF RNA1-specific primers designed based on the CVF reference genome sequences (MH998210 and MH998216), including 5’-CCACCAAATAGGCAAGAGGTCAC-3’ (position 3190–3212) and 5’-CACAATCACCATCAATGGTCTCTGC-3’ (position 3742–3766), and CVF RNA2-specific primers, including 5’-CTGCTTTATGATGCTAGACATCAAGATG-3’ (position 1015–1042) and 5’-ACAATAGGCATGCTCATCTCAACCTC-3’ (position 1594–1619). We amplified 577-bp RNA1-specific and 605-bp RNA2-specific amplicons that were cloned and then performed Sanger sequencing. Sequencing of the cloned amplicons for isolate Gadam RNA1 (GenBank MN896993) and RNA2 (GenBank MN896994) revealed values of 99.48% and 99.17% nucleotide identity to that of RNA1 and RNA2 determined by high-throughput sequencing, respectively. Additionally, we tested five plants for each of the six plum cultivars grown in the same orchard. The detection of CVF was carried out through PCR using the primers and protocol described above. Of the 30 trees, CVF was detected in three trees of cv. Gadam by both primer pairs. To our knowledge, this is the first report of CVF infecting Japanese plum and the first report of the virus in Korea. However, its prevalence in other Prunus species, including apricot, European plum, and peach, should be further elucidated.


2014 ◽  
Vol 60 (No. 12) ◽  
pp. 540-543
Author(s):  
I. Tomášková ◽  
J. Vítámvás ◽  
J. Korecký

:Germination capacity and germination energy are usually the most frequently used quantitative parameters of forest tree seed. With seed ageing both parameters decreased and the rate of the collapse is given by tree species, age of tree and its seed and biotic and abiotic factors. Relatively little attention has been paid to the age of seed. As it was found, the longevity of the main tree species remained relatively high, and spruce (Picea abies [L.] Karsten and pines (Pinus sylvestris L.) from the investigated areas across the Czech Republic maintained minimally one third of germination capacity or germination energy during the 10 years with the exception of larch (Larix decidua Mill.) where germination capacity decreased almost to zero after 10 years. Although the germination energy and germination capacity decreased significantly, it is possible to use the seed in the case of shortage of the seed of better quality. &nbsp;


2013 ◽  
Vol 40 (No. 1) ◽  
pp. 37-39 ◽  
Author(s):  
D. Šafářová ◽  
M. Navrátil ◽  
F. Paprštein ◽  
T. Candresse ◽  
A. Marais

&nbsp;The presence of Cherry virus A (CVA) in the germplasm collections of sweet cherries and plums was studied. CVA was detected using the specific RT-PCR assay in six of eight sweet cherry and one of four plum cultivars. Specifity of amplicons and distant position of cherry and non-cherry isolates was verified by sequencing and phylogenetic analysis. Results indicate that the cherry landraces and cultivars could be infected by CVA more than it has been assumed.


2010 ◽  
Vol 7 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Céline Jolivet ◽  
Aki M. Höltken ◽  
Heike Liesebach ◽  
Wilfried Steiner ◽  
Bernd Degen

Genome ◽  
2003 ◽  
Vol 46 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Silvio Schueler ◽  
Alexandra Tusch ◽  
Mirko Schuster ◽  
Birgit Ziegenhagen

Nuclear microsatellites were characterized in Prunus avium and validated as markers for individual and cultivar identification, as well as for studies of pollen- and seed-mediated gene flow. We used 20 primer pairs from a simple sequence repeat (SSR) library of Prunus persica and identified 7 loci harboring polymorphic microsatellite sequences in P. avium. In a natural population of 75 wild cherry trees, the number of alleles per locus ranged from 4 to 9 and expected heterozygosity from 0.39 to 0.77. The variability of the SSR markers allowed an unambiguous identification of individual trees and potential root suckers. Additionally, we analyzed 13 sweet cherry cultivars and differentiated 12 of them. An exclusion probability of 0.984 was calculated, which indicates that the seven loci are suitable markers for paternity analysis. The woody endocarp was successfully used for resolution of all microsatellite loci and exhibited the same multilocus genotype as the mother tree, as shown in a single seed progeny. Hence, SSR fingerprinting of the purely maternal endocarp was also successful in this Prunus species, allowing the identification of the mother tree of the dispersed seeds. The linkage of microsatellite loci with PCR-amplified alleles of the self-incompatibility locus was tested in two full-sib families of sweet cherry cultivars. From low recombination frequencies, we inferred that two loci are linked with the S locus. The present study provides markers that will significantly facilitate studies of spatial genetic variation and gene flow in wild cherry, as well as breeding programs in sweet cherry.Key words: Prunus, SSR, S alleles, endocarp, seed dispersal, cultivar identification.


2011 ◽  
Vol 57 (No. 10) ◽  
pp. 422-431 ◽  
Author(s):  
T. Hlásny ◽  
J. Holuša ◽  
ŠtěpánekP ◽  
TurčániM ◽  
SitkováZ ◽  
...  

&nbsp; We provide fundamental information about the future development of selected climate elements in relation to anticipated threat to forests in the Czech Republic. All analyses were carried out in relation to four elevation zones with specific potential forest vegetation &ndash; up to 350 m a.s.l. (oak dominance), 350&ndash;600 m a.s.l. (beech dominance), 600&ndash;900 m a.s.l. (beech-fir dominance), 900&ndash;1,100 m a.s.l. (spruce dominance). We found out that while the projected increase in mean annual air temperature is almost constant over the Czech Republic (+3.25&ndash;3.5&deg;C in the distant future), the frequency of heat spells at lower elevations is expected to increase dramatically compared to higher elevations. The precipitation totals during the vegetation season are projected to increase in the near future by up to 10% and to decrease in the distant future by up to 10% over all vegetation zones. In general, drought is presumed to become a key limiting factor at lower elevations, while increased temperature along with the prolonged vegetation season at higher elevations can be beneficial to forest vegetation. Consequently, northward progression of forest tree species and retraction of the species lower distribution range are a generic response pattern. Such impacts are presumed to be accompanied by changes in the distribution and population dynamics of pests and pathogens. Mainly the impacts on two key forest pests, Ips typographus and Lymantria dispar, are discussed. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document