scholarly journals Negative effect of clay fillers on the polyvinyl alcohol biodegradation: technical note

2019 ◽  
Vol 26 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Martin Jurca ◽  
Markéta Julinová ◽  
Roman Slavik

Abstract This work focuses on polyvinyl alcohol (PVA) biodegradation in the presence of mineral clays in an aqueous aerobic environment. PVA with a degree of hydrolysis of 88% and 72% was used for the experiments. The selected group of mineral clays (nanofillers for polymers) of montmorillonite (MMT) Cloisite® Na+; organo-modified montmorillonite (OMMT) Cloisite® 20A, Cloisite® 30B; waste kaolin; kaolin; and zeolites were prepared by synthesis of the aforementioned kaolins. The level of biodegradation was measured using a respirometer, Micro-Oxymax, and evaluated according to CO2 production. Results of this test indicate a negative effect on PVA biodegradability in the presence of MMT Cloisite® Na+ and Cloisite® 30B. It has been found that PVA biodegradability in the presence of no adapted inoculum was adversely affected by the biocidal effects of the organic modifier of Cloisite® 30B. In this case, PVA 88-8 biodegradation decreased by 71% and PVA 72-10 biodegradation dropped by 58%. Furthermore, the sorption of PVA on the Cloisite® Na+ in the range of 40%–45% was demonstrated in the following research.

2008 ◽  
Vol 587-588 ◽  
pp. 62-66 ◽  
Author(s):  
Hermes S. Costa ◽  
Alexandra A.P. Mansur ◽  
Edel Figueiredo Barbosa-Stancioli ◽  
Marivalda Pereira ◽  
Herman S. Mansur

Bioactive glasses are materials that have been used for the repair and reconstruction of diseased bone tissues, as they exhibit direct bonding with human bone tissues. However, bioactive glasses have low mechanical properties compared to cortical and cancellous bone. On the other hand, composite materials of biodegradable polymers with inorganic bioactive glasses are of particular interest to engineered scaffolds because they often show an excellent balance between strength and toughness and usually improved characteristics compared to their individual components. Composite bioactive glass-polyvinyl alcohol foams for use as scaffolds in tissue engineering were previously developed using the sol-gel route. The goal of this work was the synthesis of composite foams modified with higher amounts of PVA. Samples were characterized by morphological and chemical analysis. The mechanical behavior of the obtained materials was also investigated. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioactive glass composition ratios affect the synthesis procedure. Foams with up to 80 wt% polymer content were obtained. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm and improved mechanical properties.


2015 ◽  
Vol 35 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Martina Hrabalikova ◽  
Martha Merchan ◽  
Solongo Ganbold ◽  
Vladimir Sedlarik ◽  
Pavel Valasek ◽  
...  

Abstract This work ascertains the effect of the degree of hydrolysis of polyvinyl alcohol under extended interaction with 2-hydroxypropanoic acid (lactic acid). Systems based on three different types of polyvinyl alcohol matrices (of hydrolysis degree 80, 88 and 98 mol%) and lactic acid were characterized according to their physicochemical, mechanical and thermal properties. An agar diffusion test and the dilution and spread plate technique were conducted to facilitate antibacterial activity to counteract Staphylococcus aureus and Escherichia coli. A mathematical model was applied to the experimental data to estimate the antibacterial efficacy of the resultant flexible films.


1980 ◽  
Vol 45 (4) ◽  
pp. 1099-1108 ◽  
Author(s):  
Mikuláš Chavko ◽  
Michal Bartík ◽  
Evžen Kasafírek

A polarographic study of the hydrolysis of [8-lysine]vasopressin and some hormonogens of the vasopressin series with the blood serum of women in the last week of pregnancy was studied. The dependence of hydrolysis on pH (pH optimum: 7.4-7.50, substrate concentration (Km 1.2 . 10-5M), pH stability and thermal stability were determined. The rate of hydrolysis of individual vasopressin analogues decreases in the order: [8-lysine]vasopressin > Nα-glycyl-prolyl[8-lysine]-vasopressin > Nα-leucyl-[8-lysine]vasopressin > Nα-alanyl-[8-lysine]vasopressin > Nα-phenyl alanyl-[8-lysine]vasopressin > Nα-diglycyl-[8-lysine]vasopressin > Nα-prolyl-[8-lysine]vasopressin > Nα-triglycyl-[8-lysine]vasopressin > Nα-sarcosyl-glycyl-[8-lysine]vasopressin. The degree of hydrolysis gradually increases to a multiple with the length of the pregnancy in consequence of the presence of oxytocine. However, vasopressin is also hydrolysed to a small extent with the enzymes from the blood sera of non-pregnant women. Under similar analytical conditions oxytocin was not hydrolysed with the sera of non-pregnant women and therefore oxytocin is a more suitable substrate than vasopressin for polarographic determination of serum oxytocinase.


2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2002 ◽  
Vol 20 (6) ◽  
pp. 573-582 ◽  
Author(s):  
S. Chibowski ◽  
M. Paszkiewicz ◽  
M. Wiśniewska

The influence of sodium dodecyl sulphate (SDS) on the adsorption properties of non-ionic polymers, i.e. polyethylene glycol (PEG) and polyvinyl alcohol (PVA), at the Al2O3/solution interface was studied. Measurements for various molecular weights and for various amounts of functional groups on the polymer macromolecules were undertaken and the results obtained discussed in the light of these variations. Studies of the mutual interactions of the polymer–surfactant system in aqueous solution were helpful in explaining the equilibria involved in the Al2O3/polymer solution system in the presence of SDS. The thickness of the adsorption layer was determined by viscometric methods and the influence of the degree of hydrolysis of PVA on the structure of the adsorption layer demonstrated.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Margarita D. Marinova ◽  
Bozhidar P. Tchorbanov

Enzymatic hydrolysates of honeybee-collected pollen were prepared using food-grade proteinase and aminopeptidases entirely of plant origin. Bromelain from pineapple stem was applied (8 mAU/g substrate) in the first hydrolysis stage. Aminopeptidase (0.05 U/g substrate) and proline iminopeptidase (0.03 U/g substrate) from cabbage leaves (Brassica oleracea var. capitata), and aminopeptidase (0.2 U/g substrate) from chick-pea cotyledons (Cicer arietinum L.) were involved in the additional hydrolysis of the peptide mixtures. The degree of hydrolysis (DH), total phenolic contents, and protein contents of these hydrolysates were as follows: DH (about 20–28%), total phenolics (15.3–27.2 μg/mg sample powder), and proteins (162.7–242.8 μg/mg sample powder), respectively. The hydrolysates possessed high antiradical scavenging activity determined with DPPH (42–46% inhibition). The prepared hydrolysates of bee-collected flower pollen may be regarded as effective natural and functional dietary food supplements due to their remarkable content of polyphenol substances and significant radical-scavenging capacity with special regard to their nutritional-physiological implications.


Sign in / Sign up

Export Citation Format

Share Document