Research on Enzymatic Hydrolysis of Whey Protein

2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.

2020 ◽  
Vol 21 (12) ◽  
pp. 1249-1258
Author(s):  
Cindy T. Sepúlveda ◽  
José E. Zapata

Background: Fish is an essential source of nutrients for human nutrition due to the composition of proteins, vitamins, and minerals, among other nutrients. Enzymatic hydrolysis represents an alternative for the use of by-products of the aquaculture industry. Objective: We propose to evaluate the effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity of red tilapia (Oreochromis spp.) viscera hydrolysates. Methods: The effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity was evaluated using an experimental design that was adjusted to a polynomial equation. The hydrolysate was fractioned to determine the antioxidant activity of the fractions, and functional properties were also measured. Results: Stirring speed and protein concentration presented a statistically significant effect (p <0.05) on all the response variables. However, the temperature did not present a statistically significant effect on the degree of hydrolysis. Discussion: The best conditions of hydrolysis were stirring speed of 51.44 rpm, a temperature of 59.15°C, and the protein concentration of 10 g L-1. The solubility of the hydrolysate protein was high at different pH, and the hydrolysate fraction with the highest antioxidant activity has a molecular weight <1 kDa. Conclusion: The degree of hydrolysis and the biological activity of red tilapia viscera hydrolysates (Oreochromis spp.) are affected by temperature, substrate concentration, and stirring speed. The optimal conditions of hydrolysis allowed to obtain a hydrolysate with antioxidant activity are due to the peptides with low molecular weight.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanbin Zheng ◽  
Qiushi Chen ◽  
Anshan Shan ◽  
Hao Zhang

For utilizing the blood cells (BCs) effectively, enzymatic hydrolysis was applied to produce the enzymatically hydrolyzed blood cells (EHBCs) by using a neutral protease as a catalyst. The results of the single-factor experiments showed optimal substrate concentration, enzyme to substrate ratio (E/S), pH, temperature, and incubation period were 1.00%, 0.10, 7.00, 50.00°C, and 12.00 h, respectively. The optimized hydrolysis conditions from response surface methodology (RSM) were pH 6.50, E/S 0.11, temperature 45.00°C, and incubation period 12.00 h. Under these conditions (substrate concentration 1.00%), the degree of hydrolysis (DH) was 35.06%. The free amino acids (FAAs) content of the EHBCs (35.24%) was 40.46 times higher than BCs while the total amino acids (TAAs) content was lower than BCs. The scores of lysine (human 0.87; pig 0.97), valine (human 1.42; pig 1.38), leucine (human 1.50; pig 1.90), tyrosine (human 0.84; pig 1.09), and histidine (human 2.17; pig 2.50) indicated that the EHBCs basically fulfilled the adult human and pig nutritional requirements. The calculated protein efficiency ratios (C-PERs) of the EHBCs were 3.94, 6.19, 21.73, and 2.04. In summary, the EHBCs were produced successfully with optimized conditions and could be a novel protein source for humans and pigs.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 153-162
Author(s):  
M.K. Zainol ◽  
F.W. Abdul Sukor ◽  
A. Fisal ◽  
T.C. Tuan Zainazor ◽  
M.R. Abdul Wahab ◽  
...  

This study was aimed to optimise the Alcalase® enzymatic hydrolysis extraction of Asiatic hard clam (AHC) (Meretrix meretrix) protein hydrolysate in terms of hydrolysis time, hydrolysis temperature, hydrolysis pH, and concentration of enzyme. Protein hydrolysate produced from AHC (M. meretrix) meat was used to determine the optimum hydrolysis conditions. Hydrolysis of AHC meat was optimised using the Central Composite Design Response Surface Methodology (RSM) (CCD). The relationship between four parameters such as temperature (45 – 65°C), enzyme to substrate concentration (1 – 2%), hydrolysis time (60 – 180 mins), and pH (7.5 – 9.5) to the degree of hydrolysis was investigated. The optimum conditions for enzymatic hydrolysis of AHC meat to achieve the maximum degree of hydrolysis (DH) were observed at 65°C, enzyme to substrate concentration of 1%, hydrolysis time of 60 mins, and pH 7.5. The enzymatic protein hydrolysis of AHC meat was predicted using a two factors interaction (2FI) model. Under these optimum conditions, DH's predicted value was 97.41%, which was close to the experimental value (97.89%). The freeze-dried protein hydrolysate powder was characterized concerning the proximate composition. Proximate analysis revealed that the AHC meat contains 7.92±1.76% of moisture, 2.23±0.89% of crude fat, 1.98±0.82 of ash, and 10.53±0.04% of crude protein. While the Asiatic hard clam protein hydrolysate (AHCPH) composed 9.12±0.02% of moisture, 0.80±0.29% of crude fat, and 27.76±0.10% of ash. The protein hydrolysate produced also contained high protein content (50.09±0.88%) and may serve as a good protein source.


2016 ◽  
pp. 63-73
Author(s):  
Anton Sharikov ◽  
Anna Sereda ◽  
Elena Kostyleva ◽  
Irina Velikoretskaya ◽  
Victor Polyakov

Extrusion as a pretreatment before enzymatic hydrolysis of soybean meal is an effective technique to eliminate antinutritional properties of the main thermostable soy proteins glycinin and ?-conglycinin for production of feed ingredients with enhanced properties. In terms of economic efficiency, biotechnological processes are preferable to carry out at high substrate concentrations. The aim of the investigation was to evaluate the influence of high substrate concentrations in the range of 26-32% and enzyme dosages (0.4 - 3.1 PU/g) on efficiency of hydrolysis of extruded toasted soybean meal with bacterial protease. The results showed that maximum degree of hydrolysis was 42.1% at the enzyme dosage of 3.6 PU/g and at the substrate concentration of 29.0%. The increase in the substrate concentration had a strong effect on the deterioration of dynamic viscosity of the hydrolysates from 0.2 to 5.82 Pa?s. A combination of extrusion cooking at 120?C and enzymatic treatment with ?Protolad B? protease enabled hydrolysis of glycinin and ?-conglycinin to peptides with molecular mass below 15 kDa.


2016 ◽  
Vol 46 (6) ◽  
pp. 778-790 ◽  
Author(s):  
Ghassan Abo Chameh ◽  
Fadi Kheder ◽  
Francois Karabet

Purpose The purpose of this paper was to find out the appropriate enzymatic hydrolysis conditions of alkali pretreated olive pomace (OP) which enable maximum yield of reducing sugar. Design/methodology/approach The commercial enzymatic preparation (Viscozyme® L) was used for the hydrolysis of OP. The effects of pretreatment, time, temperature, pH, enzyme quantity and substrate loading on the hydrolysis yield were investigated. Findings This study showed that enzymatic hydrolysis of OP using Viscozyme® L can be successfully performed at 50°C. Alkaline pretreatment step of OP prior the enzymatic hydrolysis was indispensable. The hydrolysis yield of alkaline pretreated OP was 2.6 times higher than the hydrolysis yield of untreated OP. Highest hydrolysis yield (33.5 ± 1.5 per cent) was achieved after 24 h using 1 per cent (w/v) OP load in the presence of 100 μl Viscozyme® L at 50°C and pH 5.5 with mixing rate of 100 rpm (p = 0.05). Originality/value Reaction time, temperature, pH value and enzyme quantity were found to have a significant effect on enzymatic hydrolysis yield of alkali pretreated of OP. Although high-solid loadings of OP lowered the hydrolysis yield, it produced higher concentration of reducing sugars, which may render the OP conversion process more economically feasible.


2011 ◽  
Vol 20 (No. 1) ◽  
pp. 7-14 ◽  
Author(s):  
M. Hrčková ◽  
M. Rusňáková ◽  
J. Zemanovič

Commercial defatted soy flour (DSF) was dispersed in distilled water at pH 7 to prepare 5% aqueous dispersion. Soy protein hydrolysates (SPH) were obtained by enzymatic hydrolysis of the DSF using three different proteases (Flavourzyme 1000 L, No-vozym FM 2.0 L and Alcalase 2.4 L FG). The highest degree of hydrolysis (DH 39.5) was observed in the presence of protease Flavourzyme. SPH were used for measuring functional properties (foaming stability, gelation). Treatment with Flavourzyme improved foaming of proteins of DSF. Foaming stability was low in the presence of Novozym. Proteases treated DSF showed good gelation properties, mainly in the case of treatment with Flavourzyme. SDS-PAGE analysis showed that after enzyme ad-dition to the 5% aqueous dispersion of DSF each enzyme degraded both b-conglycinin and glycinin. In general, the basic polypeptide from glycinin showed the highest resistance to proteolytic activity. The most abundant free amino acids in the hydrolysates were histidine (30%), leucine (24%) and tyrosine (19%) in the case of the treatment with proteases Alcalase and Novozym, and arginine (22.1%), leucine (10.6%) and phenylalanine (12.9%) in the case of the treatment with Flavourzyme. &nbsp;


2011 ◽  
Vol 165 (3-4) ◽  
pp. 832-844 ◽  
Author(s):  
Bon-Wook Koo ◽  
Trevor H. Treasure ◽  
Hasan Jameel ◽  
Richard B. Phillips ◽  
Hou-min Chang ◽  
...  

2005 ◽  
Vol 277-279 ◽  
pp. 450-454 ◽  
Author(s):  
Young Hee Lee ◽  
Jung Soo Kim ◽  
Han Do Kim

Biodegradable superabsorbents, hydrolyzed AN(acrylonitrile)-grafted-SA(sodium alginate) copolymers were prepared in this study by graft copolymerization of acrylonitrile on sodium alginate and the subsequent hydrolysis of the resulting grafted copolymer. The absorbency was found to significantly depend on the % add-on, graft copolymerization conditions and hydrolysis conditions. The optimum condition for graft copolymerization to obtain the maximum % add-on (64.5%) was 4g SA, 12g AN, and 8.42g H2O2 in 100ml water at 70 oC for 10hr., respectively. The optimum hydrolysis conditions for the graft copolymer (64.5 % add-on) to reach the maximum water absorbency (2518g/g), saline absorbency (1558g/g), and WRV (288g/g) is 1g graft copolymer in 10 ml aqueous NaOH (1.0N) at 110 oC for 1 hr. Furthermore, this hydrolyzed AN-graft-SA showed a good biodegradability in enzymatic hydrolysis tests when compared with commercial superabsorbent materials.


Sign in / Sign up

Export Citation Format

Share Document