scholarly journals BIM integration in education: A case study of the construction technology project Bolt Tower Dolni Vitkovice

2017 ◽  
Vol 12 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Vaclav Venkrbec ◽  
Lucie Bittnerova

Abstract Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.

2021 ◽  
Vol 7 (01) ◽  
pp. 16-26
Author(s):  
Michal Brandtner

The article deals with the data structure for the purpose of Life Cycle Assessment (LCA) of buildings using the Building Information Model (BIM). LCA is a method that can be used to demonstrate the suitability of proposed materials, structures, or buildings in terms of their whole life cycle and its environmental impact. For the LCA evaluation it is crucial to obtain life cycle inventory (LCI) input data. The aim of the article is to define a BIM data structure for LCI purposes. The new methodology is based on standardization of non-graphic information model data structure called SNIM. Advantages of the proposed methodology have been demonstrated on the case study. These results are useful for expanding the BIM model with new data necessary for further LCA calculations.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 323
Author(s):  
Vachara Peansupap ◽  
Pisal Nov ◽  
Tanit Tongthong

The kingpost was a vertical element that was used to support the structural strut in the deep excavation. The structural kingpost was commonly arranged by experienced engineers who used two-dimensional construction drawings. Thus, it was still time-consuming and error-prone. Currently, an available construction program has been developed to arrange the structural kingpost by identifying the clash problems in the 3D environment. However, they have a limitation for detecting the clash that was unable to visualize the concurrent clashes between kingpost and many underground structures. Then, the engineer cannot see all the clash incidents with each kingpost and move the kingpost to avoid the clashes successfully. Since the kingpost arrangement was still an inefficient practice that was limited in the visualization aspect, this research used engineering knowledge and advanced construction technology to detect and solve the clashes between kingposts and underground structures. The methodology used engineering knowledge of kingpost arrangement to develop the system modules by using a rule-based approach. Then, these modules were developed into the system by using visual programming of Building Information Modelling (BIM). To test the system, an underground structure from building construction was selected as a case study to apply the developed system. Finally, the finding of this study could overcome human judgment by providing less interaction in the kingpost arrangement and visualization improvement of clash occurrences in the 3D model.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 586 ◽  
Author(s):  
Ziwen Liu ◽  
Qian Wang ◽  
Vincent J.L. Gan ◽  
Luke Peh

Building Information Modeling (BIM) and sustainable buildings are two future cornerstones of the Architectural, Engineering and Construction (AEC) industry. In Singapore’s context, the Green Mark (GM) scoring system is prevalently used to assess the sustainability index of green buildings. BIM provides the semantic and geometry information of buildings, which is proliferated as the technological and process backbone for the green building assessment. This research, through vast literature reviews, identified that the current procedure of achieving a Green Mark score is tedious and cumbersome, which hampers productivity, especially in the calculation of building envelope thermal performance. Furthermore, the project stakeholders work in silos, in a non-collaborative, manual and 2D-based environment for generating relevant documentation to achieve the requisite green mark score. To this end, a cloud-based BIM platform was developed, with the aim of encouraging project stakeholders to collaboratively generate the project’s green mark score digitally in accordance with the regulatory requirements. Through this research, the authors have validated the Envelope Thermal Transfer Value (ETTV) calculation, which is one of the prerequisite criteria to achieve a Green Mark score, through a case study using the developed cloud-based BIM platform. The results indicated that using the proposed platform enhances the productivity and accuracy as far as ETTV calculation is concerned. This study provides a basis for future research in implementing the proposed platform for other criteria under the Green Mark Scheme.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Majid Parchami Jalal ◽  
Tayebe Yavari Roushan ◽  
Esmatullah Noorzai ◽  
Maryam Alizadeh

PurposeThis study aims at introducing a claim management model based on building information modeling (BIM) for claims that can be visualized in BIM models.Design/methodology/approachBased on the results of a questionnaire survey, 10 claims were identified as claims that can be visualized in BIM models (named hard claims in this study). Then, a BIM-based claim management model was developed and used in a case study.FindingsA BIM-based claim management model is represented. The claim management process through this model consists of four steps: (1) extracting project information, identifying conditions prone to claim and storing them into a relational database, (2) automatically connecting the database to building information model, (3) simulation of the claims in building information model and (4) final calculations and report.Practical implicationsThe proposed model can provide benefits to parties involved in a claim, such as early identification of potential claims, large space for data storage, facilitated claim management processes, information consistency and improved collaboration.Originality/valueThere are a few studies on providing solutions to claim management based on BIM process. Hence, the original contribution of this paper is the attempt to set a link between BIM and claim management processes.


Akustika ◽  
2019 ◽  
Vol 34 ◽  
pp. 7-12
Author(s):  
Marina Butorina ◽  
Lyudmila Drozdova ◽  
Denis Kuklin

Noise mapping is the best way to present information on the acoustic pollution. To design noise protection measures, authors use modern software package SoundPLAN, which is based on the up-to-date normative documentation and scientific researches. The program allows importing the results of calculations to Autodesk tools. Improving the efficiency of the noise protection design process is executed through the implementation of building information modeling (BIM). Data exchange between SoundPLAN, AutoCAD 3D or Revit and Navisworks is used in the development of building information model. In the article we present a new approach to noise reduction through implementation of noise data into the overall information model of the infrastructure or building project. BIM helps to track the collision of calculated noise levels with residential buildings, protected premises and work places. It lays a basis for the sound proof allocation of work places and development of protection measures. BIM also serves as a support tool for the design process of sound protection barriers, since it helps to avoid interconnection of noise barriers basement with engineering networks or paste a barrier in the proper place to provide its efficiency.


2021 ◽  
Vol 13 (13) ◽  
pp. 7014
Author(s):  
Ryan Loeh ◽  
Jess W. Everett ◽  
William T. Riddell ◽  
Douglas B. Cleary

This study investigates the feasibility and benefits of transferring data between Autodesk Revit (used for building information modeling (BIM)) and BUILDER SMS (used for sustainable facility management (SFM)). Two data transfer methods were evaluated using a case study; one involved entirely manual data transfer, the other a combination of manual and automatic. Of the data transfer methods evaluated, the manual/automated hybrid was determined to be the best option, especially when regular updates are envisioned. The case study produced an enhanced BIM model that can be used to support sustainable facility management, called here an SFM-enhanced BIM model. An integration workflow is proposed for efficiently creating future SFM-enhanced BIM models. A focus group of facilities management professionals evaluated the case study BIM model. The focus group was most interested in the visualization capabilities—e.g., filtered views for condition assessments—and the ability to view the BIM model on a tablet/mobile device during on-site operation and maintenance activities.


2019 ◽  
Vol 91 ◽  
pp. 08026
Author(s):  
Natalia Knyazeva ◽  
Daria Levina

Information systems with ever-growing and increasingly complex functionality are being actively introduced into the operation services. In the process of development, the information technology finds new ways to improve efficiency of economic activities for enterprises. However, the use of automated operation control systems in the absence of representation of the construction object as a single system leads to an increase in labor costs and resource losses. There are inefficiently used operation facilities of the maintenance services that have to be solved, including energy efficiency. Many experts of operation do not have enough skills to interact with information model. There is a need to expand the application of BIM beyond construction and design, to learn to use the information obtained at these stages. Automated data collection of BIM can solve such problems with the help of BIM scenario or BIM-use. Each set of works with information about the stage of the life cycle of the project and part of project in international practice is called BIM scenarios. In general, the use of BIM scenarios and information modeling (IM) shows a composite, yet little-researched activity that can provide the necessary effect in maintenance, operation, document management, checking the energy efficiency of the building.


Sign in / Sign up

Export Citation Format

Share Document