scholarly journals Verification of building environmental assessment system for houses

2019 ◽  
Vol 14 (1) ◽  
pp. 55-66
Author(s):  
Iveta Selecká ◽  
Silvia Vilčeková ◽  
Andrea Moňoková

Abstract Sustainable construction and its architecture of buildings seeks to minimize the negative environmental impact of buildings by efficiency in the use of materials, energy, and development space and the ecosystem at large. Sustainable buildings use a conscious approach to energy and ecological conservation in the design of the built environment in cities. This article is devoted to the environmental assessment of three family houses which represent three different material and design solutions. The houses were evaluated through the Slovak building environmental assessment system (BEAS), which has been developed for Slovak conditions at the Faculty of Civil Engineering, TUKE. This study shows that the influence of green design, compared to traditional construction, is important and more beneficial for the practice of designing sustainable buildings. It creates the most comprehensive relationship between the building and its environment and significantly affects building sustainability.

2020 ◽  
Vol 12 (16) ◽  
pp. 6524 ◽  
Author(s):  
Eva Krídlová Burdová ◽  
Iveta Selecká ◽  
Silvia Vilčeková ◽  
Dušan Burák ◽  
Anna Sedláková

The presented study is focused on the verification of a Building Environmental Assessment System (BEAS). A total of 13 detached family houses representing typical construction sites in Slovakia were chosen for analysis, evaluation and certification by using a BEAS which contains several main fields: A—Site Selection and Project Planning; B—Building Construction; C—Indoor Environment; D—Energy Performance; E—Water Management; and F—Waste Management. The results of this study show that the current construction method for family houses does not respect the criteria of sustainable construction as much as it possibly can. The reason for this is that investment costs for construction are prioritized over environmental and social aspects. Therefore, one house with a score of 1.10 is certified as BEAS BRONZE, ten family houses with scores of 1.56–2.88 are certified as BEAS SILVER and only two family houses with total scores of 3.59 and 3.87, respectively, are certified as BEAS GOLD. The overall results show that the weakest fields of sustainability are Waste management, Energy performance and Building construction. The best-rated fields are Site Selection and Project Planning, Indoor Environment and Water Management. In the future, it is essential to pay attention to those areas where the sustainability criteria have not been reached, as well as to raise project teams’ awareness of sustainability issues and subsequently to transfer them to building practices.


Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Alejandra Naranjo ◽  
Andrés Colonia ◽  
Jaime Mesa ◽  
Heriberto Maury ◽  
Aníbal Maury-Ramírez

Green roof systems, a technology which was used in major ancient buildings, are currently becoming an interesting strategy to reduce the negative impact of traditional urban development caused by ground impermeabilization. Only regarding the environmental impact, the application of these biological coatings on buildings has the potential of acting as a thermal, moisture, noise, and electromagnetic barrier. At the urban scale, they might reduce the heat island effect and sewage system load, improve runoff water and air quality, and reconstruct natural landscapes including wildlife. In spite of these significant benefits, the current design and construction methods are not completely regulated by law because there is a lack of knowledge of their technical performance. Hence, this review of the current state of the art presents a proper green roof classification based on their components and vegetation layer. Similarly, a detailed description from the key factors that control the hydraulic and thermal performance of green roofs is given. Based on these factors, an estimation of the impact of green roof systems on sustainable construction certifications is included (i.e., LEED—Leadership in Energy and Environment Design, BREEAM—Building Research Establishment Environmental Assessment Method, CASBEE—Comprehensive Assessment System for Built Environment Efficiency, BEAM—Building Environmental Assessment Method, ESGB—Evaluation Standard for Green Building). Finally, conclusions and future research challenges for the correct implementation of green roofs are addressed.


2012 ◽  
Vol 174-177 ◽  
pp. 3146-3149
Author(s):  
Ying Li

Sustainable development meets the needs of the present without compromising the ability of future generations to meet their own needs. Sustainable construction is the creation and responsible maintenance of a healthy built environment, based on ecological principles, and by means of an efficient use of resources. Sustainable buildings meet customer needs through environmentally and socially responsible planning, design, construction, operation and maintenance at the least possible first-time and operating costs. Three assessment methods for sustainable buildings are included: Building Research Establishment's Environmental Assessment Method (BREEAM) in the UK, Leadership in Energy and Environmental Design (LEED) in the US and Green Globes environmental assessment and rating system. The greatest challenge sustainable construction faces is to lower the initial costs of sustainable buildings. Prefabrication is a means of saving labor and lowering the costs.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6351
Author(s):  
Maria Kaszyńska ◽  
Szymon Skibicki ◽  
Marcin Hoffmann

Despite the rapid development of 3D printing technology for cement composites, there are still a number of unsolved issues related to extrusion printing. One of them is proper mix design that allows for meeting criteria related to the printing of cementitious materials, such as pumpability, buildability, consistency on the materials, flowability and workability, simultaneously incorporating sustainable development ideas. In the case of mixes for 3D printing, the modification of the composition which increases the overall performance does not always go hand in hand with the reduction of negative environmental impact. The article presents the results of tests of eight mixtures modified with reactive and inert mineral additives designed for 3D printing. The mixes were evaluated in terms of their rheological and mechanical properties as well as environmental impact. Initial test results were verified by printing hollow columns up until collapse. Later, the differences between the compressive strength of standard samples and printed columns were determined. In order to summarize the results, a multi-faceted analysis of the properties of the mixes was carried out, introducing assessment indicators for its individual parameters. The article proves that appropriate material modification of mixes for 3D printing can significantly reduce the negative impact on the environment without hindering required 3D printing properties.


Author(s):  
Odysseas Kontovourkis

Abstract3D printing (3DP) is considered as a promising technology in construction industry due to a number of advantages that among others include fast and accurate construction, as well as elimination of formworks and material waste. Although 3DP technology is at an early stage of adoption in construction industry, its positive contribution towards a more sustainable construction approach is well acknowledged. Nevertheless, various constraints prevent its further establishment that include among others lack of knowledge among construction actors, premature investigation regarding techniques and material properties, as well as limited work on design optimization, cost, and environmental impact performance analysis. This chapter aims to contribute towards this direction by analysing the 3DP cost and environmental impact of a number of brick units, forming walls with different geometrical complexity. Results show that while walls’ complexity is increased, there are no significant changes in cost, global warming and primary energy consumption. In contrast, through the application of traditional construction processes, the result values would have been increased proportionally to the degree of complexity. This proves the potential of applying the 3DP technique to the construction of any structure at no extra cost and without increasing the environmental impact. Also, it provides an indication of its potential to be included within a regenerative construction framework.


2019 ◽  
Vol 28 (2) ◽  
pp. 224-234
Author(s):  
Jolanta Harasymiuk ◽  
Wojciech Drozd

Strategic environmental assessment constitutes the least explored in research kind of an environmental assessment in comparison to environmental impact assessment and habitat assessment. The introduction of a strategic assessment was to ensure the completeness of the assessment system of environmental impact in investment processes and to guarantee a consideration for the principle of caution in early stages of these processes. In the current legal situation, a strategic environmental assessment should anticipate a preparation of commune’s planning documents or making changes in such documents. In the case of local plans constituting minor changes of earlier-accepted documents, a strategic assessment is not made. As a result a strategic environmental assessment may be conducted in a limited scope in numerous communes. Additionally, a sketchy character and ambiguity of the regulations concerning strategic environmental assessments result in a lack of understanding for the necessity of conducting such assessments among investors and community. The aim of this article is to work out methods for strategic environmental assessment of the projects of local plans and to examine which methods of environmental impact assessment have been used in the prognoses of environmental impact, i.e. in the basic assessment documents. The research made shows that the quality of documents prepared for the need of strategic assessments is unsatisfactory in the aspects of methodology.


Sign in / Sign up

Export Citation Format

Share Document