Evaluation of exit pattern factors of an annular aero gas turbine combustor at altitude off-design conditions

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saroj Kumar Muduli ◽  
R. K. Mishra ◽  
Purna Chandra Mishra

Abstract This paper presents the experimental results of an annular combustor. A full scale full annular combustion chamber is tested at ground test stand simulating altitude off-design operating conditions. Traversing thermocouple rakes are used to measure temperatures over the entire annulus at combustor exit. The radial temperature profile is found to be a strong function of operating parameters while the circumferential pattern factor is within the design goal. Increase in reference Mach number at these off-design conditions has caused the redial temperature profiles to deviate and increase from the intended profile. These results will be used for benchmarking the computational model. The computational model will be used for detail study of the temperature non-uniformity over the entire flight envelope and also for modification of combustor liner for performance improvement.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saroj Kumar Muduli ◽  
R. K. Mishra ◽  
Purna Chandra Mishra

Abstract This paper presents the experimental results of an annular combustor. A full scale full annular combustion chamber is tested at ground test stand simulating altitude off-design operating conditions. Traversing thermocouple rakes are used to measure temperatures over the entire annulus at combustor exit. The radial temperature profile is found to be a strong function of operating parameters while the circumferential pattern factor is within the design goal. Increase in reference Mach number at these off-design conditions has caused the redial temperature profiles to deviate and increase from the intended profile. These results will be used for benchmarking the computational model. The computational model will be used for detail study of the temperature non-uniformity over the entire flight envelope and also for modification of combustor liner for performance improvement.


Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


2006 ◽  
Vol 129 (1) ◽  
pp. 69-79 ◽  
Author(s):  
T. Tinga ◽  
J. F. van Kampen ◽  
B. de Jager ◽  
J. B. W. Kok

A life assessment was performed on a fighter jet engine annular combustor liner, using a combined fluid/structural approach. Computational fluid dynamics analyses were performed to obtain the thermal loading of the combustor liner and finite element analyses were done to calculate the temperature and stress/strain distribution in the liner during several operating conditions. A method was developed to analyze a complete flight with limited computational effort. Finally, the creep and fatigue life for a measured flight were calculated and the results were compared to field experience data. The absolute number of cycles to crack initiation appeared hard to predict, but the location and direction of cracking could be correlated well with field data.


Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.


2001 ◽  
Author(s):  
Matt O’ Donnell ◽  
Sumanta Acharya

Abstract This work summarizes efforts to determine the accuracy and performance characteristics of a new and novel laser diagnostic to measure instantaneous, in flight, droplet temperatures. The instrument uses the location of the rainbow peak to deduce the refractive index of the droplet, which in turn is related to the droplet temperature. Preliminary experiments were undertaken in order to understand the fundamental operating principles and limitations of the instrument. These experiments measured the temperature of an isothermal, single stream of monodisperse droplets. These measurements indicate that the mean refractive index can be measured with a standard deviation as low as 0.0001m. Once the operation of the refractometer was proved under isothermal conditions, the measurement of droplet temperatures in a swirl-stabilized combustor was performed. These measurements indicate that the strength of the rainbow signal is significantly hampered by the noise induced by the flame. Preliminary temperature measurements with the combustor equipped with 45° vanes showed relatively constant radial temperature profiles (∼55–60°C) at locations less than 2 inches from the nozzle exit. A detailed examination of the temperature correlation with velocity and diameter revealed that larger and faster moving droplets dominate the distributions. Thus, the smaller droplets that are suspected of having the highest temperatures are inadequately represented in the mean droplet temperature.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Bernd Beirow ◽  
Jens Nipkau ◽  
Thomas Giersch ◽  
...  

Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan’s characteristic and limits its stable operating range. Despite the fact that this “flutter bite” usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade’s natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor.


Author(s):  
S. James ◽  
M. S. Anand ◽  
B. Sekar

The paper presents an assessment of large eddy simulation (LES) and conventional Reynolds averaged methods (RANS) for predicting aero-engine gas turbine combustor performance. The performance characteristic that is examined in detail is the radial burner outlet temperature (BOT) or fuel-air ratio profile. Several different combustor configurations, with variations in airflows, geometries, hole patterns and operating conditions are analyzed with both LES and RANS methods. It is seen that LES consistently produces a better match to radial profile as compared to RANS. To assess the predictive capability of LES as a design tool, pretest predictions of radial profile for a combustor configuration are also presented. Overall, the work presented indicates that LES is a more accurate tool and can be used with confidence to guide combustor design. This work is the first systematic assessment of LES versus RANS on industry-relevant aero-engine gas turbine combustors.


Author(s):  
Adam C. Shrager ◽  
Karen A. Thole ◽  
Dominic Mongillo

The complex flowfield inside a gas turbine combustor creates a difficult challenge in cooling the combustor walls. Many modern combustors are designed with a double-wall that contain both impingement cooling on the backside of the wall and effusion cooling on the external side of the wall. Complicating matters is the fact that these double-walls also contain large dilution holes whereby the cooling film from the effusion holes is interrupted by the high-momentum dilution jets. Given the importance of cooling the entire panel, including the metal surrounding the dilution holes, the focus of this paper is understanding the flow in the region near the dilution holes. Near-wall flowfield measurements are presented for three different effusion cooling hole patterns near the dilution hole. The effusion cooling hole patterns were varied in the region near the dilution hole and include: no effusion holes; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. Particle image velocimetry (PIV) was used to capture the time-averaged flowfield at approaching freestream turbulence intensities of 0.5% and 13%. Results showed evidence of downward motion at the leading edge of the dilution hole for all three effusion hole patterns. In comparing the three geometries, the outward effusion holes showed significantly higher velocities toward the leading edge of the dilution jet relative to the other two geometries. Although the flowfield generated by the dilution jet dominated the flow downstream, each cooling hole pattern interacted with the flowfield uniquely. Approaching freestream turbulence did not have a significant effect on the flowfield.


Author(s):  
Leiyong Jiang

The flow fields of a combustor cooling wiggle strip and its corresponding simplified slot with conjugate heat transfer have been studied numerically. The effects of geometrical simplification on the flow fields have been analysed qualitatively and quantitatively. It is found that its effects on the flow velocity and temperature fields are limited to local regions near the cooling element, and are negligible in the far field. However, the simplification shows a considerable effect on the combustor liner temperature near the cooling element, about 8.5% of the average temperature across the cooling element. In short, using the simplified slot to replace the cooling wiggle strip in gas turbine combustor modeling is an acceptable practice if accurate liner temperature prediction is not required.


Sign in / Sign up

Export Citation Format

Share Document