scholarly journals The ipsilateral vestibulothalamic tract in the human brain

2018 ◽  
Vol 9 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Sung Ho Jang ◽  
Hyeok Gyu Kwon

Abstract Although there are a few studies of portions of the vestibular system such as the vestibulocerebellar tract and the neural connectivity of the vestibular nuclei (VN), no study of the ipsilateral vestibulothalamic tract (VTT) (originating from the VN and mainly connecting to the lateral thalami nuclei) has been reported. In the current study, using diffusion tensor tractography (DTT), we investigate the reconstruction method and characteristics of the ipsilateral VTT in normal subjects. Thirty-three subjects were recruited for this study. For the ipsilateral VTT, the seed region of interest (ROI) was placed on the VN, which was isolated on the FA map using adjacent structures as follows: the reticular formation (anterior boundary), posterior margin of medulla and pons (posterior boundary), medial lemniscus (medial boundary) and restiform body (lateral boundary). The target ROI was placed at the lateral thalamic nuclei using known anatomical locations. The DTT parameters of the ipsilateral VTT were measured. The ipsilateral VTTs that originated from the vestibular nuclei ascended postero-laterally to the upper pons and antero-medially to the upper midbrain via the medial longitudinal fasciculus, and terminated the lateral thalamic nuclei. No significant differences were observed in DTT parameters of the ipsilateral VTT between the right and left hemispheres (p > 0.05). Using DTT, we reconstructed the ipsilateral VTT and observed the anatomical characteristics of the ipsilateral VTT in normal subjects. We believe that the methodology and results in this study could be helpful to researchers and clinicians in this field.

2020 ◽  
Vol 9 (5) ◽  
pp. 1340 ◽  
Author(s):  
Sang Seok Yeo ◽  
Sung Ho Jang ◽  
Jung Won Kwon ◽  
In Hee Cho

Background: The medial longitudinal fasciculus (MLF) interacts with eye movement control circuits involved in the adjustment of horizontal, vertical, and torsional eye movements. In this study, we attempted to identify and investigate the anatomical characteristics of the MLF in human brain, using probabilistic diffusion tensor imaging (DTI) tractography. Methods: We recruited 31 normal healthy adults and used a 1.5-T scanner for DTI. To reconstruct MLFs, a seed region of interest (ROI) was placed on the interstitial nucleus of Cajal at the midbrain level. A target ROI was located on the MLF of the medulla in the reticular formation of the medulla. Mean values of fractional anisotropy, mean diffusivity, and tract volumes of MLFs were measured. Results: The component of the MLF originated from the midbrain MLF, descended through the posterior side of the medial lemniscus (ML) and terminated on the MLF of medulla on the posterior side of the ML in the medulla midline. DTI parameters of right and left MLFs were not significantly different. Conclusion: The tract of the MLF in healthy brain was identified by probabilistic DTI tractography. We believe this study will provide basic data and aid future comparative research on lesion or age-induced MLF changes.


Author(s):  
Sung Ho Jang ◽  
Hyeok Gyu Kwon

<P>Objective: Ascending Reticular Activating System (ARAS) has a key role in consciousness. The ARAS is a complex network consisting of a portion of the brainstem reticular formation, nonspecific thalamic nuclei, hypothalamus, Basal Forebrain (BF), and cerebral cortex. We examined the reconstruction method and features of the neural tract between the hypothalamus and the BF in normal subjects, using Diffusion Tensor Tractography (DTT). Methods: Twenty-three healthy subjects were recruited. The ARAS between the hypothalamus and the BF was reconstructed by two Regions of Interest (ROIs): 1) seed ROI - the isolated green portion for the BF on the color map, 2) target ROI - the hypothalamus on the axial image. DTT parameters of the ARAS between the hypothalamus and the BF were examined. Results: Among 46 hemispheres in 23 normal subjects, 24 hemispheres (52.2 %) were identified in the ARAS between the hypothalamus and the BF. The reconstructed ARAS between the hypothalamus and the BF connected from the hypothalamus to the commissural level and anteriorly through the anterior commissure and then reached the BF. Conclusion: Using DTT, the ARAS between the hypothalamus and the BF was identified in normal subjects. Because the hypothalamus and BF are related to the regulation of wakefulness and sleep, our reconstruction method and results would be useful in the research on sleep and wakefulness aspects of consciousness.</P>


Neurosurgery ◽  
2016 ◽  
Vol 79 (3) ◽  
pp. 437-455 ◽  
Author(s):  
Antonio Meola ◽  
Fang-Cheng Yeh ◽  
Wendy Fellows-Mayle ◽  
Jared Weed ◽  
Juan C. Fernandez-Miranda

Abstract BACKGROUND The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). OBJECTIVE To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography RESULTS We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches. CONCLUSION The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches.


2015 ◽  
Vol 122 (3) ◽  
pp. 653-662 ◽  
Author(s):  
Bruno C. Flores ◽  
Anthony R. Whittemore ◽  
Duke S. Samson ◽  
Samuel L. Barnett

OBJECT Resection of brainstem cavernous malformations (BSCMs) may reduce the risk of stepwise neurological deterioration secondary to hemorrhage, but the morbidity of surgery remains high. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are neuroimaging techniques that may assist in the complex surgical planning necessary for these lesions. The authors evaluate the utility of preoperative DTI and DTT in the surgical management of BSCMs and their correlation with functional outcome. METHODS A retrospective review was conducted to identify patients who underwent resection of a BSCM between 2007 and 2012. All patients had preoperative DTI/DTT studies and a minimum of 6 months of clinical and radiographic follow-up. Five major fiber tracts were evaluated preoperatively using the DTI/DTT protocol: 1) corticospinal tract, 2) medial lemniscus and medial longitudinal fasciculus, 3) inferior cerebellar peduncle, 4) middle cerebellar peduncle, and 5) superior cerebellar peduncle. Scores were applied according to the degree of distortion seen, and the sum of scores was used for analysis. Functional outcomes were measured at hospital admission, discharge, and last clinic visit using modified Rankin Scale (mRS) scores. RESULTS Eleven patients who underwent resection of a BSCM and preoperative DTI were identified. The mean age at presentation was 49 years, with a male-to-female ratio of 1.75:1. Cranial nerve deficit was the most common presenting symptom (81.8%), followed by cerebellar signs or gait/balance difficulties (54.5%) and hemibody anesthesia (27.2%). The majority of the lesions were located within the pons (54.5%). The mean diameter and estimated volume of lesions were 1.21 cm and 1.93 cm3, respectively. Using DTI and DTT, 9 patients (82%) were found to have involvement of 2 or more major fiber tracts; the corticospinal tract and medial lemniscus/medial longitudinal fasciculus were the most commonly affected. In 2 patients with BSCMs without pial presentation, DTI/DTT findings were important in the selection of the surgical approach. In 2 other patients, the results from preoperative DTI/DTT were important for selection of brainstem entry zones. All 11 patients underwent gross-total resection of their BSCMs. After a mean postoperative follow-up duration of 32.04 months, all 11 patients had excellent or good outcome (mRS Score 0–3) at the time of last outpatient clinic evaluation. DTI score did not correlate with long-term outcome. CONCLUSIONS Preoperative DTI and DTT should be considered in the resection of symptomatic BSCMs. These imaging studies may influence the selection of surgical approach or brainstem entry zones, especially in deep-seated lesions without pial or ependymal presentation. DTI/DTT findings may allow for more aggressive management of lesions previously considered surgically inaccessible. Preoperative DTI/DTT changes do not appear to correlate with functional postoperative outcome in long-term follow-up.


2021 ◽  
Vol 11 (2) ◽  
pp. 199
Author(s):  
Seo Yoon Park ◽  
Sang Seok Yeo ◽  
Sung Ho Jang ◽  
In Hee Cho

The vestibulocerebellar tract (VCT) is regarded as an important pathway of the central vestibular system. We identified the anatomical characteristics of the primary and secondary VCTs in a normal human brain using diffusion tensor imaging (DTI) tractography. Thirty-one healthy adults were recruited. A 1.5 T scanner was used for DTI tractography. A seed region of interest (ROI) was placed on the superior and medial vestibular nuclei at the pons level and a target ROI was placed on the uvula–nodulus of the cerebellum for reconstructing the primary VCT. In the secondary VCTs, the seed ROI was placed on the inferior and medial vestibular nuclei at the medulla oblongata level, and target ROIs were placed on the bilateral uvula–nodulus of the cerebellum. The primary VCT originated from the superior and medial vestibular nuclei at the pons level and terminated at the ipsilateral uvula–nodulus of the cerebellum. The component of the secondary VCTs originated from the inferior and medial vestibular nuclei at the level of the medulla oblongata and terminated at the bilateral uvula–nodulus of the cerebellum. Among them, 70.97% in the contralateral secondary VCT crossed at the vermis of the cerebellum. In addition, the fractional anisotropies (FAs) and mean diffusivity (MD) values of the primary VCT were significantly higher and lower, respectively, compared to those of the secondary VCTs (p < 0.05). The contralateral secondary VCT was significantly higher and lower in the MD and tract volume, respectively (p < 0.05), compared to the ipsilateral VCT. Therefore, we believe that the results will be useful for future studies of the vestibular projection pathway in the human brain injury aspect of central vestibular syndrome.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 289-289
Author(s):  
Antonio Meola ◽  
Fang-Cheng Yeh ◽  
Wendy Fellows-Mayle ◽  
Jared Weed ◽  
Juan Carlos Fernandez-Miranda

Abstract INTRODUCTION The brainstem is one of the most challenging areas for the neuro- surgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). Objective: To construct a high angular/spatial resolution, wide-population based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS We applied advanced diffusion MRI finer tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue stained histological sections were used to validate the results of tractography. RESULTS >We acquired the tractography of the major brainstem pathways and vali- dated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spino- thalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supra- collicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, antero- lateral (to the medulla), and retro-olivary approaches. CONCLUSION The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches.


Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 81
Author(s):  
Su Min Son ◽  
Min Cheol Chang

We describe the successful application of hinged ankle−foot orthoses (AFOs) in a cerebral palsied (CP) patient with gait instability due to a disrupted medial lemniscus (ML). The patient was a 27-month-old male CP child with gait instability who presented with reduced knee flexion and ankle dorsiflexion, with severe genu recurvatum on his right lower extremity during gait. The patient had no motor weakness or spasticity. Conventional magnetic resonance imaging (MRI) revealed no definite abnormal lesion. However, diffusion tensor tractography (DTT) showed disruption of the left ML, consistent with right hemiplegic symptoms. The integrity of the major motor-related neural tracts, including the corticospinal and corticoreticulospinal tracts, was preserved. We considered that the patient’s abnormal gait pattern was related to the disrupted ML state. We applied hinged AFOs, which immediately resulted in a significantly stabilized gait. The angles of knee flexion and ankle dorsiflexion increased. Our findings indicate that the application of hinged AFOs could be a useful therapeutic option for CP patients with gait instability related to ML disruption. In addition, we showed that DTT is a useful tool for identifying the causative brain pathology in CP patients, especially when conventional brain MRIs show no specific lesion.


1989 ◽  
Vol 62 (1) ◽  
pp. 70-81 ◽  
Author(s):  
P. D. Gamlin ◽  
J. W. Gnadt ◽  
L. E. Mays

1. Single-unit recording studies in alert Rhesus monkeys characterized the vergence signal carried by abducens internuclear neurons. These cells were identified by antidromic activation and the collision of spontaneous with antidromic action potentials. The behavior of abducens internuclear neurons during vergence was compared with that of horizontal burst-tonic fibers in the medial longitudinal fasciculus (MLF) and to that of a large sample of unidentified abducens cells (presumably both motoneurons and internuclear neurons). 2. The results indicate that abducens internuclear neurons and lateral rectus motoneurons behave similarly during vergence eye movements: the majority of both groups of cells decrease their firing rate for convergence eye movements: a minority show no change for vergence. This finding is strongly supported by recordings of horizontal burst-tonic fibers in the MLF, the majority of which decrease their activity significantly for convergence eye movements. 3. These findings indicate that a net inappropriate vergence signal is sent to medial rectus motoneurons via the abducens internuclear pathway. Because medial rectus motoneurons increase their activity appropriately during symmetrical convergence, this inappropriate MLF signal must be overcome by a more potent direct vergence input. 4. Overall, both abducens internuclear neurons and lateral rectus motoneurons decrease their activity for convergence less than would be expected based on their conjugate gain. This implies that some degree of co-contraction of the lateral and medial rectus muscles occurs during convergence eye movements. 5. Some horizontal burst-tonic MLF fibers decrease their activity more for convergence than any recorded abducens neuron. These fibers may arise from cells in the nucleus prepositus hypoglossi or vestibular nuclei.


2019 ◽  
Vol 122 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Huiling Peng ◽  
Carmen M. Cirstea ◽  
Christina L. Kaufman ◽  
Scott H. Frey

Reductions in sensory and motor activity following unilateral upper limb amputation during adulthood are associated with widespread, activity-dependent reorganization of the gray matter and white matter through the central nervous system. Likewise, in cases of congenital limb absence there is evidence that limited afferent or efferent activity affects the structural integrity of white matter pathways serving the affected side. Evidence that the structural integrity of mature sensory and motor tracts controlling the lost upper limb exhibits similar activity dependence is, however, sparse and inconsistent. Here we used diffusion tensor tractography to test whether amputation of the dominant right hand during adulthood ( n = 16) alters the microstructural integrity of the major sensory (medial lemniscus, ML) and motor (corticospinal tract, CST) pathways controlling missing hand function. Consistent with prior findings, healthy control subjects ( n = 27) exhibited higher fractional anisotropy (FA), an index of white matter microstructural integrity, within dominant left CST and nondominant right ML. Critically, in contrast to what might be expected if the microstructural organization of these tracts is activity dependent, these asymmetries persisted in amputees. Moreover, we failed to detect any differences in dominant left ML or CST between healthy control subjects and amputees. Our results are consistent with these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (in a compensatory fashion or with prosthesis) provides stimulation sufficient to maintain tract integrity. NEW & NOTEWORTHY We report that unilateral hand amputation in adults has no significant effects on the structure of major sensory or motor pathways contralateral to the amputation. Our results are consistent with the organization of these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (with or without a prosthesis) provides stimulation sufficient to maintain tract integrity.


Sign in / Sign up

Export Citation Format

Share Document