scholarly journals Stability of Thin-Walled Beams with Lateral Continuous Restraint

Author(s):  
Ivan Balázs ◽  
Jindřich Melcher

Abstract Metal beams of thin-walled cross-sections have been widely used in building industry as members of load-bearing structures. Their resistance is usually limited by lateral torsional buckling. It can be increased in case a beam is laterally supported by members of cladding or ceiling construction. The paper deals with possibilities of determination of critical load of thin-walled beams with lateral continuous restraint which is crucial for beam buckling resistance assessment

2020 ◽  
Vol 23 (11) ◽  
pp. 2442-2457
Author(s):  
Noémi Seres ◽  
Krisztina Fejes

This article focuses on the lateral-torsional buckling resistance of girders with slender, class 4 cross-sections with a research aim to check the accuracy of the design resistance model of EN1993-1-1 and EN1993-1-5 on the coupled instability of lateral-torsional buckling and local plate buckling resistances. The current Eurocode-based design method considers in the effective cross-sectional resistance calculation that yield strength is reached in the extreme fibre of the cross-section, and the reduction factor [Formula: see text] related to local plate buckling is calculated based on this assumption. However, if lateral-torsional buckling occurs, maximum stress in the web can be significantly smaller at the ultimate limit state which is not considered in the effective cross-sectional resistance calculation. On the other side, EN1993-1-1 proposes to consider the effective bending moment resistance in the relative slenderness calculation of lateral-torsional buckling, which is in contradiction with the general definition of the relative slenderness ratio [Formula: see text], which should refer to the plastic resistance divided by the critical load of the structure. This article aims to check if the current Eurocode-based design rules need improvement and to check the effect of the above-mentioned specific issues on the calculated lateral-torsional buckling resistance. An extensive numerical research programme is executed to check and compare the lateral-torsional buckling resistance of class 3 (as reference) and class 4 cross-sections, and results are compared to Eurocode-based design models.


Author(s):  
Vera V Galishnikova ◽  
Tesfaldet H Gebre

Introduction. Structural stability is an essential part of design process for steel structures and checking the overall stability is very important for the determination of the optimum steel beams section. Lateral torsional buckling (LTB) normally associated with beams subject to vertical loading, buckling out of the plane of the applied loads and it is a primary consideration in the design of steel structures, consequently it may reduce the load currying capacity. Methods. There are several national codes to verify the steel beam against LTB. All specifications have different approach for the treatment of LTB and this paper is concentrated on three different methods: America Institute of Steel Construction (AISC), Eurocode (EC) and Russian Code (SP). The attention is focused to the methods of developing LTB curves and their characteristics. Results. AISC specification identifies three regimes of buckling depending on the unbraced length of the member ( Lb ). However, EC and SP utilize a reduction factor (χ LT ) to treat lateral torsional buckling problem. In general, flexural capacities according to AISC are higher than those of EC and SP for non-compact sections.


Sign in / Sign up

Export Citation Format

Share Document