Phase Transitions in the Alkali C1 —n. C4 Alkanoates

1975 ◽  
Vol 30 (11) ◽  
pp. 1447-1457 ◽  
Author(s):  
P. Ferloni ◽  
M. Sanesi ◽  
P. Franzosini

The enthalpies and entropies of fusion and of solid state transitions in Li formate and acetate; Li, Na, K, Rb, Cs propionates; Li, Rb, Cs n.butyrates were determined by differential scanning calorimetry. Supplementary information was provided through conductance measurements on solids. The collected data, together with those from previous papers, allowed to give a picture of the thermal behaviour of the alkali C1-n. C4 alkanoates.Heat capacity data on solid and molten Na formate, acetate and propionate were also determined

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5149 ◽  
Author(s):  
Tilman Barz ◽  
Johannes Krämer ◽  
Johann Emhofer

The area-proportional baseline method generates phase fraction–temperature curves from heat capacity data of phase change materials. The curves describe the continuous conversion from solid to liquid over an extended temperature range. They are consistent with the apparent heat capacity and enthalpy modeling approach for the numerical solution of heat transfer problems. However, the curves are non-smooth, discrete signals. They are affected by noise in the heat capacity data and should not be used as input to continuous simulation models. This contribution proposes an alternative method based on spline approximation for the generation of consistent and smooth phase fraction–temperature, apparent heat capacity–temperature and enthalpy–temperature curves. Applications are presented for two commercial paraffins from Rubitherm GmbH considering heat capacity data from Differential Scanning Calorimetry and 3-layer-calorimetry. Apparent heat capacity models are validated for melting experiments using a compact heat exchanger. The best fitting models and the most efficient numerical solutions are obtained for heat capacity data from 3-layer-calorimetry using the proposed spline approximation method. Because of these promising results, the method is applied to melting data of all 44 Rubitherm paraffins. The computer code of the corresponding phase transition models is provided in the Supplementary Information.


Cryogenics ◽  
2010 ◽  
Vol 50 (10) ◽  
pp. 693-699 ◽  
Author(s):  
Hal Suzuki ◽  
Akira Inaba ◽  
Christoph Meingast

2007 ◽  
Vol 32 (4) ◽  
pp. 49-54 ◽  
Author(s):  
A. B. Siqueira ◽  
C. T. de Carvalho ◽  
E. C. Rodrigues ◽  
E. Y. Ionashiro ◽  
G. Bannach ◽  
...  

Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.


2018 ◽  
Vol 34 (2) ◽  
pp. 15
Author(s):  
Adriano Buzutti De Siqueira ◽  
Cláudio Teodoro De Carvalho ◽  
Elias Yuki Ionashiro ◽  
Massao Ionashiro

Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.


2006 ◽  
Vol 31 (1) ◽  
pp. 21-30 ◽  
Author(s):  
E. C. Rodrigues ◽  
A. B. Siqueira ◽  
E. Y. Ionashiro ◽  
G. Bannach ◽  
M. Ionashiro

Solid-state M-4-MeO-Bz compounds, where M stands for trivalent La, Ce, Pr, Nd and Sm and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, polymorphic transformation, ligand's denticity, thermal behaviour and thermal decomposition of the isolated compounds.


2015 ◽  
Vol 44 (42) ◽  
pp. 18447-18458 ◽  
Author(s):  
M. Węcławik ◽  
P. Szklarz ◽  
W. Medycki ◽  
R. Janicki ◽  
A. Piecha-Bisiorek ◽  
...  

Dipyrazolium iodide triiodide, [C3N2H5+]2[I−·I3−], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy.


2021 ◽  
Author(s):  
Francesco Marin ◽  
Serena Tombolesi ◽  
Tommaso Salzillo ◽  
Omer Yaffe ◽  
Lucia Maini

N,N’-dipentyl-3,4,9,10-perylendiimide (PDI-C5) is an organic semiconducting material which has been extensively investigated as model compound for its optoelectronic properties. It is known to be highly thermally stable, that it exhibits solid-state transitions with temperature and that thermal treatments lead to an improvement in its performance in devices. Here we report a full thermal characterization of PDI-C5 by combination of differential scanning calorimetry, variable temperature X-ray diffraction, hot stage microscopy, and variable temperature Raman spectroscopy. We identified two high temperature polymorphs, form II and form III, which form respectively at 112 °C and at 221 °C and we determined their crystal structure from powder data. Form II is completely reversible upon cooling with low hysteresis, while form III revealed a different thermal behaviour upon cooling depending on the technique and crystal size. The crystal structure’s features of the different polymorphs are discussed and compared, and we looked into the role of the perylene core and alkyl chains during solid-state transitions. The thermal expansion principal axis of PDI-C5 crystal forms is reported showing that all the reported forms possess negative thermal expansion (X1) and large positive thermal expansion (X3) which are correlated to thermal behaviour observed.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 229-235 ◽  
Author(s):  
M. Gaune-Escard ◽  
L. Rycerz

The heat capacities of the solid and liquid K3LnCl6 compounds (Ln = La, Ce, Pr, Nd) have been determined by differential scanning calorimetry (DSC) in the temperature range 300 -1100 K. Their temperature dependence is discussed in terms of the phase transitions of these compounds as reported in literature. The heat capacity increases and decreases strongly in the vicinity of a phase transition but else varies smoothly. The Cp data were fitted by an equation which provides a satisfactory representation up to the temperatures of Cp discontinuity. The measured heat capacities were checked for consistency by calculating the enthalpy of formation of the liquid phase, which had been previously measured. The results obtained compare satisfactorily with these experimental data.


2019 ◽  
Vol 486 (2) ◽  
pp. 193-196
Author(s):  
L. T. Denisova ◽  
A. D. Izotov ◽  
Yu. F. Kargin ◽  
L. A. Irtugo ◽  
V. V. Beletskiy ◽  
...  

SmFeGe2O7 germanate was obtained by solid-state reactions from stoichiometric mixtures of starting oxides with multistage firing within 1273-1473 K. The effect of temperature on the heat capacity of the compound was studied using differential scanning calorimetry. Based on the dependence Cp = f(T), its thermodynamic properties are calculated.


Sign in / Sign up

Export Citation Format

Share Document