apparent heat capacity
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3631
Author(s):  
Chusheng Qi ◽  
Jinyue Wang ◽  
Vikram Yadama

A one-dimensional heat transfer model was developed to simulate the heat transfer of oriented natural fiber reinforced thermoplastic composites during hot-pressing and provide guidance for determining appropriate hot-pressing parameters. The apparent heat capacity of thermoplastics due to the heat of fusion was included in the model, and the model was experimentally verified by monitoring the internal temperature during the hot-pressing process of oriented sorghum fiber reinforced high-density polyethylene (HDPE) film composites (OFPCs). The results showed that the apparent heat capacity of HDPE accurately described its heat fusion of melting and simplified the governing energy equations. The data predicted by the model were consistent with the experimental data. The thermal conduction efficiency increased with the mat density and HDPE content during hot-pressing, and a higher mat density resulted in a higher mat core temperature. The addition of HDPE delayed heat transfer, and the mat had a lower core temperature at a higher HDPE content after reaching the melting temperature of HDPE. Both the experimental and simulated data suggested that a higher temperature and/or a longer duration during the hot-pressing process should be used to fabricate OFPC as the HDPE content increases.


Author(s):  
T.E. Akhapkina ◽  
A.A. Gurov ◽  
S.N. Solovev ◽  
S.V. Kozhevnikova

The paper considers using a high-sensitivity calorimeter with an isothermal jacket to measure heat capacities of electrolyte salt solutions at the temperature of 298.15 K, the salt being sodium iodide NaI dissolved in isopropyl alcohol and in mixtures of isopropyl alcohol with water containing 10, 20, and 40 % water by mass, at various molalities of the electrolyte salt. We processed the apparent heat capacity values computed for the electrolyte salt by means of the ion association model, which assumes that there exists an equilibrium between ions and ion pairs of the same type in a solution. The association constant values obtained make it possible to predict the heat capacity values not measured empirically, which lie within the margin of error of the experimental values. The investigation shows that the apparent heat capacity of the electrolyte salt as a function of concentration is adequately described by the ion association model in a wide range of solution molalities


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 354
Author(s):  
Andreas König-Haagen ◽  
Erwin Franquet ◽  
Moritz Faden ◽  
Dieter Brüggemann

This work is the final one in a series of three papers devoted to shedding light on the performance of fixed grid methods, also known as enthalpy methods, for the modeling and the simulation of solid/liquid phase transition. After a detailed analysis of five of the most common enthalpy methods for conductive-dominated and conductive-convective problems and then a study concerning the formulation of the advective term in the energy balance equation, the aim of the present paper is to extend the above-mentioned studies by an investigation of the numerical performance. Such a goal is achieved by comparing the required iterations and, even if it is shown to be only a rough guide, the simulation time of each method, for a great variety of parameter variations. In terms of contribution, the main conclusions of this overall work are to demonstrate that almost all solvers give similar results when stable. However, there are still distinctive deviations with the experiments, highlighting the need for a proper validation experiment. The second important assessment concerns resilience: almost all solvers work well, with only the applied apparent heat capacity method being the major exception as it often leads to unrealistic results. As a rule of thumb, models are more resilient when only the sensible enthalpy is advected. As far as the average of the required iterations is concerned, the so-called optimum approach needs the least. The order of the other solvers depends on the advective formulation, whereas source-based methods perform averagely and the tested apparent heat capacity method poorly. Cases with only sensible enthalpy advected need fewer iterations for four of the five solvers and less computational time for all solvers.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5149 ◽  
Author(s):  
Tilman Barz ◽  
Johannes Krämer ◽  
Johann Emhofer

The area-proportional baseline method generates phase fraction–temperature curves from heat capacity data of phase change materials. The curves describe the continuous conversion from solid to liquid over an extended temperature range. They are consistent with the apparent heat capacity and enthalpy modeling approach for the numerical solution of heat transfer problems. However, the curves are non-smooth, discrete signals. They are affected by noise in the heat capacity data and should not be used as input to continuous simulation models. This contribution proposes an alternative method based on spline approximation for the generation of consistent and smooth phase fraction–temperature, apparent heat capacity–temperature and enthalpy–temperature curves. Applications are presented for two commercial paraffins from Rubitherm GmbH considering heat capacity data from Differential Scanning Calorimetry and 3-layer-calorimetry. Apparent heat capacity models are validated for melting experiments using a compact heat exchanger. The best fitting models and the most efficient numerical solutions are obtained for heat capacity data from 3-layer-calorimetry using the proposed spline approximation method. Because of these promising results, the method is applied to melting data of all 44 Rubitherm paraffins. The computer code of the corresponding phase transition models is provided in the Supplementary Information.


2020 ◽  
Author(s):  
Tomas Vogel ◽  
Michal Dohnal ◽  
Jana Votrubova ◽  
Jaromir Dusek

<p>Increasingly, numerical models of varying complexity are used to simulate the thermal and water balance of soils exposed to freezing-thawing cycles. An important aspect of soil freezing modeling is the highly non-linear nature of the energy balance equation during phase transition. To handle the transformation between sensible and latent heat during freezing–thawing events, the majority of existing models employ the concept of apparent heat capacity. The main disadvantage of this approach is that the apparent heat capacity increases by several orders of magnitude at the freezing point, which complicates the numerical solution, possibly causing numerical oscillations and convergence problems.</p><p>An alternative approach was developed to facilitate the simulations of soil water flow and energy transport during sporadic freezing–thawing episodes, which are typical for the winter regime of humid temperate continental climate. The approach is based on an accurate non-iterative algorithm for solving highly non-linear energy balance equation during phase transitions. The suggested modeling approach abstracts from many complexities associated with the freezing phenomena in soils, yet preserves the principal physical mechanism of conserving the internal energy of the soil system during the phase transitions. When applied to simulate occasional freezing soil conditions, the model algorithm delivers the desired effect of slowing down the propagation of surface freezing temperatures into deeper soil horizons by converting water latent heat into sensible heat. The model also allows the evaluation of the extent and duration of frozen soil conditions – a crucial information for soil water flow modeling, as the frozen soil significantly reduces the soil hydraulic conductivity.</p><p>The proposed algorithm was successfully verified against analytical solutions for idealized freezing and thawing conditions and applied to both hypothetical and real field conditions.</p>


2019 ◽  
Vol 69 (6) ◽  
pp. 545-549
Author(s):  
Çiğdem Susantez ◽  
Aldélio Bueno Caldeira

The control of the solidification process of energetic materials is important to prevent manufacturing defects in high explosive ammunitions. The present work aims to propose an optimisation procedure to determine the value of the model parameter, avoiding the traditional trial and error approach. In this work, the solidification of TNT has been numerically modelled employing apparent heat capacity method and the model parameter was optimised using genetic algorithm. One dimensional numerical model has been solved in Comsol Multiphysics Modeling Software and the genetic algorithm code was written in Matlab. The Neumann’s analytical solution of the solidification front was used as a reference to build the fitness function, following the inverse problems concepts. The optimum model parameter has been predicted after 20 generations and among 30 candidate solutions for each generation. The numerical solution performed with the optimised model parameter has agreed with the analytical solution, indicating the feasibility of the proposed procedure. The discrepancy was 3.8 per cent when maximum difference between analytical and numerical solutions was observed.


2019 ◽  
Author(s):  
Ahmad Aljabr ◽  
Andrew Chiasson ◽  
Abinesh Selvacanabady ◽  
Ali Sulaiman Alsagri

Abstract A thermal analysis of a GCHP system is performed to investigate the effect of adding micro-encapsulated PCM into the borehole grout to improve the thermal performance of GCHP systems. The apparent heat capacity method is used in the numerical model, simulated in COMSOL. The PCM’s thermal properties were varied to study the effect of each property, such as PCM melting temperature, transition temperature range, PCM thermal conductivity, and the amount of PCM within the grout. Even though the low thermal conductivity of PCM compared to ordinary grout adversely affects the GCHP system performance, a potential reduction (∼2%) in borehole length is achieved. The best melting temperature is that which results in a complete melting of PCM around the peak load, instead of around the average load. The melting temperature must be chosen properly for each GCHP scenario, otherwise the benefit from using PCM may not be achieved. There is an insignificant change in the heat pump consumption because EFT is more favorable in PCM cases around the melting temperature, but less favorable after melting completely.


2017 ◽  
Vol 74 ◽  
pp. 240-253 ◽  
Author(s):  
L.J. Fischer ◽  
S. von Arx ◽  
U. Wechsler ◽  
S. Züst ◽  
J. Worlitschek

Author(s):  
Anirudh Srivatsa ◽  
Perry Y. Li

For a compressed air energy storage (CAES) system to be competitive for the electrical grid, the air compressor/expander must be capable of high pressure, efficient and power dense. However, there is a trade-off between efficiency and power density mediated by heat transfer, such that as the process time increases, efficiency increases at the expense of decreasing power. This trade-off can be mitigated in a liquid (water) piston air-compressor/expander with enhanced heat transfer. However, in the past, dry air has been assumed in the design and analysis of the compression/expansion process. This paper investigates the effect of moisture on the compression efficiency and power. Evaporation and condensation of water play contradictory roles — while evaporation absorbs latent heat enhancing cooling, the tiny water droplets that form as water condenses also increase the apparent heat capacity. To investigate the effect of moisture, a 0-D numerical model that takes into account the water evaporation/condensation and water droplets have been developed. Results show that inclusion of moisture improves the efficiency-power trade-off minimally at lower flow rates, high efficiency cases, and more significantly at higher flow rates, lower efficiency cases. The improvement is primarily attributed to the increase in apparent heat capacity due to the increased propensity of water to evaporate.


Sign in / Sign up

Export Citation Format

Share Document