Relativistic Ground and Excited State Energies of a/1-Particle in Hypernuclei Using Woods-Saxon Potentials

1989 ◽  
Vol 44 (12) ◽  
pp. 1234-1238 ◽  
Author(s):  
C. G. Koutroulos

Abstract The relativistic Dirac equation with a scalar potential and the fourth component of a vector potential of the Woods-Saxon shape is solved numerically for potential parameters obtained by a last squares fitting procedure of the ground state binding energies of the Λ in a number of hypernuclei and its binding energies in the ground and excited states (as well as the relevant spacings) for various hypcrnuclei are determined. The results are in very good agreement with the preliminary experimental ones given by Chrien on the basis of the (π+, K+) reaction on nuclei.

1990 ◽  
Vol 45 (1) ◽  
pp. 14-16
Author(s):  
C. G. Koutroulos

Abstract The Dirac equation with scalar potential and fourth component of vector potential of the Gaussian form is solved numerically for potential parameters obtained by a least squares fitting of the ground state binding energies of the A in a number of hypernuclei. The binding energies in the ground and excited states for various hypernuclei are determined. The spacings between the various levels are also given


2018 ◽  
Vol 33 (04) ◽  
pp. 1850022 ◽  
Author(s):  
S. Mohammad Moosavi Nejad ◽  
A. Armat

Using an analytical solution for the relativistic equation of single [Formula: see text]-hypernuclei in the presence of Woods–Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the [Formula: see text] binding energies in a set of [Formula: see text]-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of [Formula: see text]-hypernuclei. Systematic study of the energy levels of single [Formula: see text]-hypernuclei enables us to extract more detailed information about the [Formula: see text]-nucleon interaction. We also study the root mean square (RMS) radii of the [Formula: see text] orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


2017 ◽  
Vol 19 (30) ◽  
pp. 19590-19600 ◽  
Author(s):  
G. Capano ◽  
T. J. Penfold ◽  
M. Chergui ◽  
I. Tavernelli

On-the-fly excited state molecular dynamics is a valuable method for studying non-equilibrium processes in excited states and is beginning to emerge as a mature approach much like its ground state counterparts.


The apparatus described in part I has been employed to determine the energy of the excited states of the nucleus 17 O by observations on the protons from the reaction 16 O ( d , p ) 17 O, and on the α-particles from the reaction 19 F( d , α) 17 O . The protons from the first reaction were observed a t five angles of emission with respect to the primary beam, and the α-particles from the second at four angles. Thirteen excited states of 17 O were observed, evidence for ten of which was given by both reactions. The values for the energy in the different excited states, derived from both reactions and at different angles of observation, are in good agreement. The Q -values of the reactions 16 O( d , p ) 17 O and 19 F( d , α) 17 O , in which the 17 O nucleus is formed in its ground state, are 1.928 and 10.042 MeV, respectively. The Q -value for the reaction 16 O( d , α) 14 N was found to be 3.09 MeV, and the existence of two excited states of 14 N was established. Ten excited states of 20 F were observed in a study of the proton groups from the reaction 19 F( d , p ) 20 F.


1960 ◽  
Vol 13 (2) ◽  
pp. 99 ◽  
Author(s):  
JA McDonell ◽  
DG Sargood ◽  
JR Moroney ◽  
JR Prescott

The energies of some neutron groups leading to low excited states of "C in the reaction lOB(d,ny)"C have been measured. These lead to values of 4�3�0�3 MeV and 6�53 � O' 02 MeV for the energies of the second and fourth excited states respectively. y-Ray spectra have also been studied in coincidence with different neutron groups. Ground state transitions were observed from the second, third, and fourth excited states, together with cascade decays of the fourth excited state through each of the second and third. Deductions from these y-ray spectra considerably reduce the number of spin possibilities which have been found for these levels by other workers.


2009 ◽  
Vol 6 (s1) ◽  
pp. S259-S279 ◽  
Author(s):  
Masoud Motamedi ◽  
Najmehalsadat Khademi

The millimeter-wave rotational spectra of the ground and excited vibrational states v(A), v1(E) =1 and v2(E ) =1 of the oblate symmetric top molecule, (CH2O)3, have been analyzed again. The B0= 5273.25747MHz, DJ= 1.334547 kHz, DJk= -2.0206 kHz, HJ(-1.01 mHz), HJK(-3.80 mHz), and HKJ(4.1 mHz) have been determined for ground state. For non degenerate excited state, vA(1), the B = 5260.227723 MHz and DJand DJKwere determined 1.27171 kHz and -1.8789 kHz respectively. The 1=±1 series have been assigned in two different excited states v1(E) =1 and v2(E) =1.Most of the parameters were determined with higher accuracy compare with before. For the v2(E) =1 state the Cζ=-1940.54(11) MHz and qJ= 0.0753 (97) kHz were determined for the first time.


2011 ◽  
Vol 20 (11) ◽  
pp. 2293-2303 ◽  
Author(s):  
PROVASH MALI

The ground state properties namely the binding energy, the root mean square (rms) radius (neutron, proton and charge) and the deformation parameter of 45 newly identified neutron-rich isotopes in the A~71–152 mass region have been predicted in the relativistic mean filed (RMF) framework along with the Bardeen–Cooper–Schrieffer (BCS) type of pairing. Validity of the RMF results with the NL3 effective force are tested for odd-A Zn and Rh isotopic chains without taking the time reversal symmetry breaking effects into consideration. The RMF prediction on the binding energies are in good agreement with the empirical/finite-range droplet model calculation. The shell effects on the rms radii of odd-A Zn and Rh isotopes are nicely reproduced. The possibility of shape-coexistence in the newly identified nuclei is discussed.


1989 ◽  
Vol 43 (6) ◽  
pp. 940-952 ◽  
Author(s):  
O. Axner ◽  
T. Berglind

State-specific ionization efficiencies for excited Li and Na atoms in acetylene/air flames have been determined. The ionization efficiencies, i.e., the probability that the excited atoms ionize instead of returning to the ground state, are determined by relating collision-assisted Laser-Enhanced Ionization (LEI) signals from various excited states with laser-induced photoionization signals. The ionization efficiencies are found to decrease (from being one at the ionization limit) almost monotonically as the lower atoms are excited. The most striking feature, however, is that the decrease of the ionization efficiency values is generally found to be less than the decrease of the Boltzmann factor, exp(- δE/kT), when the energy difference, δE, between the excited state and the ionization limit is increased. The ionization efficiencies are found to be close to unity for states with δE < kT and approximately 50% for states with δE ≈ 2.5 kT ( np ≈ 6 p). For the lower states, the ionization efficiencies are found to be approximately five times larger than the Boltzmann factor.


2012 ◽  
Vol 22 (1) ◽  
pp. 91-96
Author(s):  
Nguyen Tuan Khai ◽  
Bui Duy Linh ◽  
Tran Duc Thiep ◽  
Y. Fujita ◽  
T Adachi ◽  
...  

Under the assumption that isospin \(T\) is a good quantum number, mirror transitions \(T_{z }= +1 \to  0\) and \(T_{z }= -1  \to  0\) were studied in \(A = 34\) isobars, where \(T_{z}\) is \(z\) component of iospin \(T\) and is defined by \(T_{z} = (N-Z)/2\). With a high energy resolution of 35 keV in \(^{34}\)S\((^{3}He,t)^{34}\)Cl reaction measurement at \(0^{\circ}\) scattering angle and at an incident energy of 140 MeV/nucleon, strengths of Fermi and Gamow-Teller (GT) transitions from the \(J^{\pi } = 0^{ + }\), \(T_{z }= +1\) ground state of \(^{34}\)S to the \(J^{\pi } = 1^{+ }\), \(T_{z }= 0\) excited states in \(^{34}\)Cl were determined up to excitation energy \((E_{x})\) of \(7.08\) MeV. The corresponding isospin-symmetric transitions connecting \(T_{z }= -1\) and \(T_{z }= 0\) states can be studied in the \(^{34}\)Ar \(\beta ^{ + }\) decay. The strengths of the \((GT)_{\pm }\) transitions were compared up to the excitation energy of 3.1 MeV. A good agreement was observed for two strong transitions to \(2.580\) MeV and \(3.129\) MeV states, while a disagreement about \(45\text{%}\) was observed for a weaker transition to \(0.666\) MeV low-lying state.


Sign in / Sign up

Export Citation Format

Share Document