Relativistic excited state binding energies and RMS radii of Λ-hypernuclei

2018 ◽  
Vol 33 (04) ◽  
pp. 1850022 ◽  
Author(s):  
S. Mohammad Moosavi Nejad ◽  
A. Armat

Using an analytical solution for the relativistic equation of single [Formula: see text]-hypernuclei in the presence of Woods–Saxon (WS) potential we present, for the first time, an analytical form for the excited state binding energies of 1p, 1d, 1f and 1g shells of a number of hypernuclei. Based on phenomenological analysis of the [Formula: see text] binding energies in a set of [Formula: see text]-hypernuclei, the WS potential parameters are obtained phenomenologically for the set of [Formula: see text]-hypernuclei. Systematic study of the energy levels of single [Formula: see text]-hypernuclei enables us to extract more detailed information about the [Formula: see text]-nucleon interaction. We also study the root mean square (RMS) radii of the [Formula: see text] orbits in the hypernuclear ground states. Our results are presented for several hypernuclei and it is shown that our results for the binding energies are in good agreement with experimental data.

1989 ◽  
Vol 44 (12) ◽  
pp. 1234-1238 ◽  
Author(s):  
C. G. Koutroulos

Abstract The relativistic Dirac equation with a scalar potential and the fourth component of a vector potential of the Woods-Saxon shape is solved numerically for potential parameters obtained by a last squares fitting procedure of the ground state binding energies of the Λ in a number of hypernuclei and its binding energies in the ground and excited states (as well as the relevant spacings) for various hypcrnuclei are determined. The results are in very good agreement with the preliminary experimental ones given by Chrien on the basis of the (π+, K+) reaction on nuclei.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dhia Elhak Salhi ◽  
Soumaya Manai ◽  
Sirine Ben Nasr ◽  
Haikel Jelassi

Abstract Energy levels, wavelengths, weighted oscillator strengths, transition probabilities and lifetimes are calculated for all levels of 1s 2 and 1snl (n = 2–6) configurations of He-like cadmium ion (Cd XLVII). The calculations were carried out using three codes GRASP2018, FAC and AMBiT in order to provide theoretically the most accurate data. Transition probabilities are reported for all the E1, E2, M1 and M2 transitions. Breit interactions and quantum electrodynamics effects are included in the RCI calculations. Comparisons were made with other calculations and a good agreement was found which confirms the reliability of our results. We present some missing data for the He-like cadmium in this paper for the first time.


2014 ◽  
Vol 92 (9) ◽  
pp. 1043-1046 ◽  
Author(s):  
Şule Ateş ◽  
Yasin Gökçe ◽  
Gültekin Çelik ◽  
Murat Yıldız

Electric dipole transition probabilities and oscillator strengths for singly ionized terbium (Tb II) have been calculated with the weakest bound electron potential model (WBEPM) theory using experimental energy levels and theoretical expectation values of orbital radii corresponding to those energy levels under the assumption of the Jj coupling scheme. The transition probabilities and the oscillator strengths calculated have been compared with available data in the literature. A good agreement has been obtained. In this work, the WBEPM theory has been applied to heavy atoms, such as Tb II, for the first time.


2017 ◽  
Vol 2 (2) ◽  
pp. 52-56
Author(s):  
Dhia Elhak Salhi ◽  
Haikel Jelassi

In this paper, we present calculations for some of the lowest energy levels and lifetimes for neutral helium. The FAC (Flexible-Atomic-Code) is a reliable code for calculating 49 energy levels and their lifetimes. The calculation is performed up to n=5 including a series of configuration of 1s2 and 1snl. Comparison has been made with similar data published in the NIST database. A good agreement of less than1% was found for most levels expect the 1s2p 3P2 level. This proves the reliability of our results. New values for lifetimes are presented for the first time.


2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
M. Raineri ◽  
M. Gallardo ◽  
J. Reyna Almandos ◽  
A. G. Trigueiros ◽  
C. J. B. Pagan

A capillary pulsed-discharge and a theta-pinch were used to record Kr spectra in the region of 330–4800 Å. A set of 168 transitions of these spectra were classified for the first time. We extended the analysis to twenty-five new energy levels belonging to 3s23p24d, 3s23p25d even configurations. We calculated weighted transition probabilities (gA) for all of the experimentally observed lines and lifetimes for new energy levels using a relativistic Hartree–Fock method, including core-polarization effects.


2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


2006 ◽  
Vol 84 (8) ◽  
pp. 1045-1049 ◽  
Author(s):  
Shabaan AK Elroby ◽  
Kyu Hwan Lee ◽  
Seung Joo Cho ◽  
Alan Hinchliffe

Although anisyl units are basically poor ligands for metal ions, the rigid placements of their oxygens during synthesis rather than during complexation are undoubtedly responsible for the enhanced binding and selectivity of the spherand. We used standard B3LYP/6-31G** (5d) density functional theory (DFT) to investigate the complexation between spherands containing five anisyl groups, with CH2–O–CH2 (2) and CH2–S–CH2 (3) units in an 18-membered macrocyclic ring, and the cationic guests (Li+, Na+, and K+). Our geometric structure results for spherands 1, 2, and 3 are in good agreement with the previously reported X-ray diffraction data. The absolute values of the binding energy of all the spherands are inversely proportional to the ionic radius of the guests. The results, taken as a whole, show that replacement of one anisyl group by CH2–O–CH2 (2) and CH2–S–CH2 (3) makes the cavity bigger and less preorganized. In addition, both the binding and specificity decrease for small ions. The spherands 2 and 3 appear beautifully preorganized to bind all guests, so it is not surprising that their binding energies are close to the parent spherand 1. Interestingly, there is a clear linear relation between the radius of the cavity and the binding energy (R2 = 0.999).Key words: spherands, preorganization, density functional theory, binding energy, cavity size.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


Sign in / Sign up

Export Citation Format

Share Document