High-temperature Calorimetry of Liquid Gd–Si and Y–Si Alloys

2005 ◽  
Vol 60 (8-9) ◽  
pp. 649-654 ◽  
Author(s):  
Dmitry S. Kanibolotsky ◽  
Olena A. Bieloborodovaa ◽  
Vladyslav V. Lisnyak

Molten Gd-Si and Y-Si alloys were examined calorimetrically at 1760 and 1770 K, respectively. The partial enthalpies of mixing of gadolinium (Δmix H̅Gd), yttrium (Δmix H̅Y) and silicon (Δmix H̅Si) were measured. The integral enthalpy of mixing (ΔmixH) was calculated by Darken’s method. The available thermodynamic data of liquid (Gd,Y)-Si alloys were compared. The partial enthalpies of mixing of Gd and Y, and appropriate integral enthalpies of mixing, were described by polynomial dependencies versus mole fraction of Gd or Y.

Author(s):  
Natalia Usenko ◽  
Michael Ivanov ◽  
Natalia Kotova

Abstract The enthalpies of mixing in liquid alloys of the binary Cu-Eu and ternary Al-Cu-Eu systems were determined over a wide range of compositions by means of isoperibolic calorimetry in the temperature range 1 300 - 1450 K. The enthalpies of mixing in the Cu-Eu system demonstrate small exothermic effects (ΔHmin = -4.1 ± 0.5 kJ · mol-1at xCu = 0.70). The measurements for the liquid ternary Al- Cu-Eu alloys were performed along five sections (xCu/ xEu = 0.70/0.30; 0.50/0.50 and 0.27/0.73 for xAl changed from 0 up to 0.30 and xAl/xEu = 0.20/0.80 and 0.47/0.53 for xCu changed from 0 up to 0.30). The enthalpies of mixing in the ternary system were found to be exothermic and increasing in absolute values from the Al corner towards the Al0.40Cu0.60-Al0.60Eu0.40section and from the constituent binary Cu-Eu system towards the same section. The minimum value of the integral enthalpy of mixing is expected in the vicinity of the Al0.6Eu0.4composition of the binary constituent Al-Eu system (about -23.00 kJ · mol-1).


2021 ◽  
Vol 9 (1) ◽  
pp. 51-62
Author(s):  
Natalia Kotova ◽  
Michael Ivanov ◽  
Natalia Usenko

Partial and integral enthalpies of mixing of the ternary Ag–Ca–Ge melts were determined for the first time by the high-temperature isoperibolic calorimetry at 1300–1550 K. The experiments were performed for six sections with a constant ratio of two components up to the molar fraction of the third component equal to 0.3. The enthalpies of mixing in this ternary system are exothermic values which increase in absolute value from the Ag corner of the concentration triangle towards the constituent binary Ca–Ge system. The minimum value of the integral enthalpy of mixing was obtained for Ca0.6Ge0.4 composition of the Ca–Ge binary system (about –58.00 kJ mol–1). The enthalpies of mixing of the ternary Ag–Ca–Ge melts are calculated for the whole concentration triangle by the Redlich-Kister-Muggianu method, taking into account the term of specific ternary interaction defined from our experimental data. The topology of the isoenthalpies of mixing is determined.


2007 ◽  
Vol 22 (11) ◽  
pp. 3218-3225 ◽  
Author(s):  
U. Saeed ◽  
H. Flandorfer ◽  
H. Ipser

Partial and integral enthalpies of mixing of liquid Ag–Cu–Ni–Sn alloys were determined at 1000 °C by a drop calorimetric technique using a Calvet type microcalorimeter. They were obtained by adding Ni to the ternary Ag–Cu–Sn alloys with different composition. The data were evaluated by means of an extended Redlich–Kister–Muggianu polynomial fit for substitutional solutions. The minimum and maximum in the quaternary system were also calculated. It was found that the maximum integral enthalpy of mixing (13,310 J/mol at 41 at.% Ag) occurs in the binary Ag–Ni system while the minimum integral enthalpy of mixing (−21,390 J/mol at 61 at.% Ni) occurs in the binary Ni–Sn system. Moreover the experimental data were compared to values calculated by different extrapolation models based on binary data.


2017 ◽  
Vol 41 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Chun-Lang Yeh

Owing to the high temperature inside a sulfur recovery unit (SRU) thermal reactor, detailed experimental measurements are difficult. In the author’s previous studies, several methods have been assessed to resolve the abnormality of the SRU thermal reactor under high temperature operation. This paper presents a new easier and more economical method. The effects of inlet air quantity and inlet O2 mole fraction on the combustion and fluid flow in a SRU thermal reactor are investigated numerically. The flow field temperature, S2 recovery, H2S mole fraction, and SO2 emissions are analyzed. This paper provides a guideline for adjusting the inlet air quantity and the inlet O2 mole fraction to reduce the high temperature inside a thermal reactor and to ensure an acceptable sulfur recovery.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012095
Author(s):  
M R Shavaleev ◽  
N M Barbin ◽  
D I Terentyev ◽  
S I Osipenko ◽  
D S Belkin

Abstract To improve and specify the method proposed by the authors for high-temperature processing of reactor graphite in a nitrogen atmosphere, the thermodynamic data of the formed nitride compounds are supplemented and the system is calculated at a vacuum pressure of 0.5 atm. The data obtained are compared with the values at atmospheric pressure.


1971 ◽  
Vol 49 (11) ◽  
pp. 1830-1840 ◽  
Author(s):  
D. N. Glew ◽  
Harry Watts

Calorimetric enthalpies of mixing have been measured over the whole composition range for the water – ethylene oxide system at 10.75 and 20.00 °C and for the deuterium oxide – ethylene oxide system at 13.45 and 20.00 °C. Less extensive measurements have been made for dilute ethylene oxide solutions in water at 0.6 °C and in deuterium oxide at 4.1 and 7.3 °C. The experimental S-shaped, enthalpy of mixing – composition curves are interpreted in terms of solution hydrogen bonding changes, with particular reference to the hydrogen bonding of water. At low ethylene oxide mole fractions the deuterium oxide systems are more exothermal and at high ethylene oxide mole fractions more endothermal than the corresponding water systems. A good correlation is found between the enthalpy of mixing and the water proton magnetic resonance chemical shift for solutions with greater than 0.55 mol fraction of ethylene oxide.


Sign in / Sign up

Export Citation Format

Share Document