Induced Magnetic Field Effects on Peristaltic Flow in a Curved Channel

2015 ◽  
Vol 70 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Saima Noreen

AbstractThe peristaltic flow of an incompressible viscous fluid in a curved channel is investigated. The flow analysis is conducted in the presence of an induced magnetic field. A long-wavelength and low-Reynolds number approach is followed. The stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. We observed that symmetry in the profiles of u and ϕ is disturbed because of curvature effects. For larger values of curvature k, results of planar channel are deduced. The effects of significant parameters have been portrayed and discussed.

2013 ◽  
Vol 68 (5) ◽  
pp. 380-390 ◽  
Author(s):  
Saima Noreen ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

A mathematical model is developed to examine the effects of an induced magnetic field on the peristaltic flow in a curved channel. The non-Newtonian pseudoplastic fluid model is used to depict the combined elastic and viscous properties. The analysis has been carried out in the wave frame of reference, long wavelength and low Reynolds scheme are implemented. A series solution is obtained through perturbation analysis. Results for stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are constructed. The effects of significant parameters on the flow quantities are sketched and discussed.


2013 ◽  
Vol 10 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Saima Noreen ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Analysis has been made for the curvature effects on the MHD peristaltic flow of an incompressible Carreau fluid in a channel. The flow problem is first reduced in the wave frame of reference and then solved after employing the long wavelength and low Reynolds number approximations. Expressions of stream function, pressure gradient, magnetic force function, induced magnetic field and current density are derived and then examined for various parameters of interest.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250058 ◽  
Author(s):  
T. HAYAT ◽  
S. NOREEN ◽  
A. ALSAEDI

The purpose of this study is to discuss the influence of induced magnetic field on the peristaltic flow of an incompressible third-grade fluid in a curved channel. The problem formulation is presented in a wave frame of reference. The continuity, linear momentum, and induction equations lead to the mathematical development. The relations of stream function, pressure gradient, magnetic force function, induced magnetic field, and current density are developed. The effects of embedded parameters are explained by plots.


2008 ◽  
Vol 2008 ◽  
pp. 1-23 ◽  
Author(s):  
Kh. S. Mekheimer

We carry out the effect of the induced magnetic field on peristaltic transport of an incompressible conducting micropolar fluid in a symmetric channel. The flow analysis has been developed for low Reynolds number and long wavelength approximation. Exact solutions have been established for the axial velocity, microrotation component, stream function, magnetic-force function, axial-induced magnetic field, and current distribution across the channel. Expressions for the shear stresses are also obtained. The effects of pertinent parameters on the pressure rise per wavelength are investigated by means of numerical integrations, also we study the effect of these parameters on the axial pressure gradient, axial-induced magnetic field, as well as current distribution across the channel and the nonsymmetric shear stresses. The phenomena of trapping and magnetic-force lines are further discussed.


2013 ◽  
Vol 68 (12) ◽  
pp. 751-758 ◽  
Author(s):  
Tasawar Hayat ◽  
Saima Noreen ◽  
Muhammad Qasim

In this paper, we discuss the effects of heat and mass transfer on the peristaltic flow in the presence of an induced magnetic field. Constitutive equations of a Phan-Thien-Tanner fluid are utilized in the mathematical description. Mathematical modelling is based upon the laws of mass, linear momentum, energy, and concentration. Relevant equations are simplified using long wavelength and low Reynolds number assumptions. A series solution is presented for small Weissenberg number. Variations of emerging parameters embedded in the flow system are discussed.


2010 ◽  
Vol 65 (8-9) ◽  
pp. 665-676 ◽  
Author(s):  
Tasawar Hayat ◽  
Saima Noreen ◽  
Nasir Ali

This article looks at the influence of an induced magnetic field on peristaltic motion of an incompressible fluid in a planar channel with non-conductive walls. Peristaltic flow is generated by a sinusoidal wave travelling down its walls. The problem formulation in a wave frame of reference moving with velocity of wave is established. Mathematical relations for the stream function, pressure gradient, magnetic force function, and axial induced magnetic field are constructed. The pressure rise and frictional force are discussed by performing numerical integration. Effects of many sundry parameters entering into the governing problem are examined by plotting graphs


2010 ◽  
Vol 65 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Nasir Ali ◽  
Muhammad Sajid ◽  
Tasawar Hayat

This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110336
Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Alia Razia

The consequences of double-diffusivity convection on the peristaltic transport of Sisko nanofluids in the non-uniform inclined channel and induced magnetic field are discussed in this article. The mathematical modeling of Sisko nanofluids with induced magnetic field and double-diffusivity convection is given. To simplify PDEs that are highly nonlinear in nature, the low but finite Reynolds number, and long wavelength estimation are used. The Numerical solution is calculated for the non-linear PDEs. The exact solution of concentration, temperature and nanoparticle are obtained. The effect of various physical parameters of flow quantities is shown in numerical and graphical data. The outcomes show that as the thermophoresis and Dufour parameters are raised, the profiles of temperature, concentration, and nanoparticle fraction all significantly increase.


2013 ◽  
Vol 25 (2) ◽  
pp. 107-118 ◽  
Author(s):  
A. M. Abd-Alla ◽  
S. M. Abo-Dahab ◽  
R. D. El-Semiry

Sign in / Sign up

Export Citation Format

Share Document