scholarly journals Cell Cycle Analysis and Stimulation of Rat Kangaroo Cells (PtK2) after Pulse Labeling

1971 ◽  
Vol 26 (7) ◽  
pp. 722-724 ◽  
Author(s):  
Peter R. Lorenz ◽  
John W. Ainsworth

The phases of the cell cycle of Potorous tridactylus (PtK2) cells were determined in vitro by analysis of labeled mitoses for 37-½ hours after a tritiated thymidine pulse. The mean duration of DNA synthesis (tS) was 8 h. The mean duration of the gap phase before appearance of labeled mitoses was 5 h. Whereas the duration of the cell cycle (tC) based on analysis of labeled mitoses was 30 h, the doubling time (tD) derived from cell counts in the same cultures was only about 23 h. The analysis of the indices of labeled nuclei and mitoses suggests a stimulation of cells at the time of pulse labeling, which was maximal after beginning of the gap phase before DNA-synthesis, and possibly caused the observed difference between tC and tD.

1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


1993 ◽  
Vol 13 (1) ◽  
pp. 408-420 ◽  
Author(s):  
E P Carmichael ◽  
J M Roome ◽  
A F Wahl

The inverted repeat domain (IR domain) within the simian virus 40 origin of replication is the site of initial DNA melting prior to the onset of DNA synthesis. The domain had previously been shown to be bound by a cellular factor in response to DNA damage. We demonstrate that two distinct cellular components bind opposite strands of the IR domain. Replication protein A (RPA), previously identified as a single-stranded DNA binding protein required for origin-specific DNA replication in vitro, is shown to have a preference for the pyrimidine-rich strand. A newly described component, IR factor B (IRF-B), specifically recognizes the opposite strand. IRF-B binding activity in nuclear extract varies significantly with cell proliferation and the cell cycle, so that binding of IRF-B to the IR domain is negatively correlated with the onset of DNA synthesis. Loss of IRF-B binding from the nucleus also occurs in response to cellular DNA damage. UV cross-linking indicates that the core binding component of IRF-B is a protein of ca. 34 kDa. We propose that RPA and IRF-B bind opposite strands of the IR domain and together may function in the regulation of origin activation.


1977 ◽  
Vol 75 (3) ◽  
pp. 881-888 ◽  
Author(s):  
AS Weissfeld ◽  
H Rouse

When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
A Raza ◽  
Y Maheshwari ◽  
HD Preisler

The proliferative characteristics of myeloid leukemias were defined in vivo after intravenous infusions of bromodeoxyuridine (BrdU) in 40 patients. The percentage of S-phase cells obtained from the biopsies (mean, 20%) were significantly higher (P = .00003) than those determined from the bone marrow (BM) aspirates (mean, 9%). The post- BrdU infusion BM aspirates from 40 patients were incubated with tritiated thymidine in vitro. These double-labeled slides were utilized to determine the duration of S-phase (Ts) in myeloblasts and their total cell cycle time (Tc). The Ts varied from four to 49 hours (mean, 19 hours; median, 17 hours). Similarly, there were wide variations in Tc of individual patients ranging from 16 to 292 hours (mean, 93 hours; median, 76 hours). There was no relationship between Tc and the percentage of S-phase cells, but there was a good correlation between Tc and Ts (r = .8). Patients with relapsed acute nonlymphocytic leukemia (ANLL) appeared to have a longer Ts and Tc than those studied at initial diagnosis. A subgroup of patients at either extreme of Tc were identified who demonstrated clinically documented resistance in response to multiple courses of chemotherapy. We conclude that Ts and Tc provide additional biologic information that may be valuable in understanding the variations observed in the natural history of ANLL.


1979 ◽  
Vol 150 (1) ◽  
pp. 196-201 ◽  
Author(s):  
H R MacDonald ◽  
R K Less

The requirement for DNA synthesis during the primary differentiation of cytolytic T lymphocytes (CTL) had been investigated. CTL were induced polyclonally in vitro by stimulation of normal C57BL/6 spleen cells with concanavalin A (Con A)and their cytolytic activity was tested against 51Cr-labeled target cells in the presence of Bacto Phytohemagglutinin M. With this system, CTL activity could first be detected 48 h after exposure of spleen cells to Con A. Addition of cytosine arabinoside at concentrations sufficient to reduce DNA synthesis by 95-98% in Con A-stimulated cultures did not significantly inhibit the generation of cytolytic activity on a cell-to-cell basis. These results demonstrate that derepression of the genetic information required for the expression of CTL function can occur in the absence of detectable DNA synthesis.


1988 ◽  
Vol 8 (4) ◽  
pp. 1670-1676 ◽  
Author(s):  
K T Riabowol ◽  
R J Vosatka ◽  
E B Ziff ◽  
N J Lamb ◽  
J R Feramisco

Transcription of the protooncogene c-fos is increased greater than 10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G0) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, we microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, we found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G0 to G1 of the cell cycle, its function is also required during the early G1 portion of the cell cycle to allow subsequent DNA synthesis.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4694-4700 ◽  
Author(s):  
Radovan Vrhovac ◽  
Alain Delmer ◽  
Ruoping Tang ◽  
Jean-Pierre Marie ◽  
Robert Zittoun ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of resting lymphocytes. The identification of p27kip1, a cyclin-dependent kinase inhibitor that contributes to cell cycle arrest and represents a link between extracellular signals and cell cycle, prompted us to study p27 protein in the lymphocytes from 88 patients with B-CLL and 32 patients with other chronic B-lymphoproliferative disorders. The expression of p27 protein was higher in B-CLL samples with variations among them. In B-CLL, p27 levels were independent of absolute number of circulating lymphocytes, but strongly correlated with both lymphocyte and total tumor mass (TTM) doubling time. High p27 expression was associated with a poorer overall prognosis. In vitro, there was an increased spontaneous survival of B-CLL cells expressing high p27 levels. Interleukin-4 (IL-4) upregulated p27 levels in B-CLL cells, while fludarabine decreased p27 levels. Thus, our results indicate that p27 may be a valuable kinetic marker in B-CLL by providing instantaneous estimation of the disease doubling time. In addition, these results suggest that there is a link between p27 expression and the ability of CLL cells to undergo apoptosis.


2007 ◽  
Vol 292 (4) ◽  
pp. L924-L935 ◽  
Author(s):  
Anna A. Birukova ◽  
Panfeng Fu ◽  
Santipongse Chatchavalvanich ◽  
Dylan Burdette ◽  
Olga Oskolkova ◽  
...  

We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.


Parasitology ◽  
1993 ◽  
Vol 107 (2) ◽  
pp. 119-124 ◽  
Author(s):  
T. J. C. Beebee ◽  
A. L.-C. Wong

SUMMARYPrototheca richardsi, an unpigmented heterotrophic alga, causes growth inhibition in amphibian larvae and has proved refractory to culturein Vitro.P. richardsireplication is dependent on regular passaging through tadpole digestive systems; uptake of thymidine by free-livingProtothecacells and incorporation into DNA are very low by comparison with leucine uptake and incorporation into protein, but DNA synthesis is detectable in cells isolated from tadpole intestines. DNA replication was elicited 6–8 h after ingestion in protothecans fed to tadpoles and subsequently re-isolated from them, providing that the tadpoles were fed subsequent to the ingestion. It appears that passaging through tadpole intestines provides an essential stimulus to maintaining an active cell division cycle inP. richardsi.


Sign in / Sign up

Export Citation Format

Share Document