Francoanellit K3Al5HPO4)6(PO4)2 · 12H2O: Struktur und Synthese durch topochemische Entwässerung von Taranakit / Francoanellite K3Al5HPO4)6(PO4)2 · 12H2O: Structure and Synthesis by Topochemical Dehydration of Taranakite

1998 ◽  
Vol 53 (7) ◽  
pp. 711-719 ◽  
Author(s):  
Stefan Dick ◽  
Thomas Zeiske

Abstract Single crystals of synthetic francoanellite K3Al5(HPO4)6(PO4)2-12H2O could be obtained for the first time by topochemical dehydration of taranakite crystals. An X-ray structure determination showed francoanellite to be the mineral with the second longest crystallographic axis described hitherto. Crystal data: space group R3c, a = 869.0(2), c = 8227(1)pm, Z = 6 , Rg = 0.042. Francoanellite is a layer structure mineral having six layers of composition [K3Al5(HPO4)6(PO4)2(H2O)12], connected by hydrogen bonds. The rigid layer is formed by columns of corner sharing hydrogen phosphate tetrahedra and AIO6-octahedra which are inter­ connected by additional six-coordinated Al ions. In trigonal holes of the layer orthophosphate ions are situated. The structure of francoanellite is very similar to the structure of taranakite K3H6Al5(PO4) 8 · 18H2O which has planar water interlayers between the Al-phosphate layers. A neutron scattering experiment with subsequent Rietveld refinement of the powder pattern gave the H-atom positions. Hydrogen bonds in francoanellite are formed within the rigid layers and between them.During the reaction taranakite → francoanellite crystals in an intermediate stage of dehydration could be obtained. From the c-axis of 8858 pm and one-dimensional electron density projections it can be proposed that in these crystals every second water interlayer was lost and a first order staging product of the deintercalation of water from taranakite was formed.

2000 ◽  
Vol 55 (3-4) ◽  
pp. 299-316 ◽  
Author(s):  
Dagmar Henschel ◽  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract In a study aim ed at the „deconstruction“ of the supramolecular aggregate 3(18C6) · 2HN( SO2Me)2 (1,18C6 = 18-crown-6), which is known to display a ladder structure with two isotactic [18C6 - Me SO2N(H)SO2Me···)∞ polymers forming the uprights and symmetrically N - H···O bonded 18C6 rings providing the rungs, the following crystalline complexes were isolated and (except for 2b) characterized by low-temperature X-ray diffraction: 18C6-ClN (SO2Me)2 (2a, triclinic, space group P1̅, Z = 2), 18C6-PhN (SO2Me)2 (2b), 18C6 -MeN(SO2Me)2 (3, monoclinic, P21/c, Z = 8), Bz18C6-HN(SO2Me)2 (4, Bz18C6 = benzo-18-crown-6, monoclinic, P21/n, Z = 4), 18C6-2 MeN (SO2Me)2 (5, triclinic, P1̅, Z = 1), 18C6-Me2SO- HN( SO2Me) (SO2Ph) (13, triclinic, P1̅, Z = 2), and 18C6-H2OMe2SO·2HN(SO2Me)2 (14, triclinic, P1̅, Z = 2). Each of the one-dimensional polymers 2a (syndiotactic), 3 (disyndiotactic) and 4 (isotactic) mimics a single upright of 1; in contrast to 1 and 2a, where the intra-catemer connectivity solely relies on S - Me ··· crow n and crown ··· O = S hydrogen bonds, this bonding system is reinforced in 3 by N -Me ··· crown and in 4 by N - H ··· crown hydrogen bonds. Complex 5 is monomeric and matches a fragment formally extruded from the catemer 3; moreover, 3 and 5 represent a rare case of two structurally characterized 18C6 complexes containing the same uncharged guest species in distinct molecular ratios. The surprising structure of the quaternary adduct 14 exhibits an [18C6 ··· MeSO2N(H)SO2Me ··· ]∞ chain, which can be regarded both as an isolated, though unmodified upright from the ladder 1 and, being syndiotactic, as a stereochemical analogue of 2a; the potentially rung-forming *NH functions in the chain are blocked by hydrogenbonded side chains of the type * N - H ··· water ··· sulfoxide ··· H - N (SO2Me)2. The ternary complex 13 consists of chains [18C6 ··· Me2SO ··· H - N (SO2Ph)SO2Me···]∞ and is not closely related to the other structures


2007 ◽  
Vol 561-565 ◽  
pp. 2095-2098
Author(s):  
Takashi Harumoto ◽  
Ji Shi ◽  
Yoshio Nakamura

Pt/AlN multilayered films fabricated by alternative sputtering deposition were characterized by X-Ray Reflectometry and X-Ray Diffraction. As-deposited films have (111) and (001) preferred orientation for Pt and AlN, respectively. The X-Ray Reflectivity profiles are assigned to the total reflection and Bragg reflections due to periodic layer structure. The Bragg peaks are observed at the 2Theta range beyond 15 degree and the peak intensities increase after annealing. The reflectivity of the first order Bragg reflection is approximately 65% and is stable after annealing at 873K. Simulation of the reflectivity profile has shown roughnesses of the Pt/AlN interfaces are below 0.4nm. X-Ray Diffraction revealed the development of film texture and formation of superlattice by annealing. The latter indicates periodicity of film is very high.


2002 ◽  
Vol 57 (8) ◽  
pp. 914-921 ◽  
Author(s):  
P. G. Jones ◽  
J. Ossowski ◽  
P. Kus

N,N′-Dibutyl-terephthaldiamide (1), N,N′-dihexyl-terephthaldiamide (2), N,N′-di(tert-butyl)- terephthaldiamide (3), N,N,N′,N′-tetrabutyl-terephthaldiamide (4), 1,1′-terephthaloylbis- pyrrolidine (5), 1,1′-terephthaloyl-bis-piperidine (6), and 4,4′-terephthaloyl-bis-morpholine (7) have been synthesised and physicochemically characterised. The X-ray structure determinations reveal imposed inversion symmetry for compounds 1-6; compound 3 has two independent molecules with inversion symmetry in the asymmetric unit. Compounds 1-3 form classical hydrogen bonds of the type N-H···O=C, leading to a ribbon-like arrangement of molecules (1 and 2) or a layer structure (3). Compound 3 also displays a very short C-H···O interaction, a type of hydrogen bond that is also observed in compounds 4-7, which lack classical donors; thereby compounds 4-6 form layer structures and 7 a complex threedimensional network.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3927
Author(s):  
Jing-Shuai Wu ◽  
Xiao-Hui Shi ◽  
Ya-Hui Zhang ◽  
Chang-Lun Shao ◽  
Xiu-Mei Fu ◽  
...  

Chemical epigenetic modification on a marine-derived fungus Aspergillus terreus RA2905 using a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), resulted in a significantly changed metabolic profile. A chemical investigation of its ethyl acetate (EtOAc) extract led to the isolation of a racemate of benzyl furanone racemate (±)-1, which further separated chirally as a pair of new enantiomers, (+)- and (−)-asperfuranone (1), together with two new benzyl pyrones, asperpyranones A (2) and B (3). Their structures were elucidated by analysis of the comprehensive spectroscopic data, including one-dimensional (1D) and two-dimensional (2D) NMR, and HRESIMS. The absolute configurations were determined by electronic circular dichroism (ECD) calculation and single-crystal X-ray crystallographic experiment. The structures with benzyl furanone or benzyl pyrone skeletons were discovered from natural products for the first time. Compounds (±)-1, (+)-1, (−)-1, and 2 displayed the antifungal activities against Candida albicans with MIC values of 32, 16, 64, and 64 μg/mL and PTP1B inhibitory activities with the IC50 values of 45.79, 17.32, 35.50, and 42.32 μM, respectively. Compound 2 exhibited antibacterial activity against Pseudomonas aeruginosa with the MIC value of 32 μg/mL.


2017 ◽  
Vol 73 (8) ◽  
pp. 600-608 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units areM3+O6octahedra (M= Al, Ga, In) that are connectedviaone H2AsO4−and two H2As2O72−groups into chains, and furtherviaH2As2O72−groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak-to-medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72−groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak-to-medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4−and H2As2O72−groups.


Author(s):  
Kai-Long Zhong

A new one-dimensional NiIIcoordination polymer of 1,3,5-tris(imidazol-1-ylmethyl)benzene, namelycatena-poly[[aqua(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiIIcation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands link the NiIIcations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ionsviaO—H...O hydrogen bonds.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


2006 ◽  
Vol 62 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Andreas Schönleber ◽  
F. Javier Zúñiga ◽  
J. Manuel Perez-Mato ◽  
Jacques Darriet ◽  
Hans-Conrad zur Loye

The structure of the compound Ba1 + x Ni x Rh1 − x O3 [x = 0.1170 (5)] has been analyzed at room temperature within the (3 + 1)-dimensional superspace approach using single-crystal X-ray diffraction data. Two different models are presented, the compound is refined as modulated composite as well as modulated-layer structure. In both models discontinuous atomic domains are applied to describe the structural modulations. While the first approach stresses the pseudo-one-dimensional constitution, the latter highlights the layered character of these structures.


1999 ◽  
Vol 54 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Rolf W. Saalfrank ◽  
Jochen Nachtrab ◽  
Stephan Reck

Reaction of dimethyl 1,3-acetonedicarboxylate 8 with oxalylchloride 2 and magnesium chloride as catalyst yielded 2,3-dioxo-2,3-dihydrofuran 9, which is in equilibrium with tautomer 10 (9:10 = 1:2). Addition of thionyl chloride to a mixture of 9/10 afforded 3-chloro-2(5H)-furanone 11. The structure of 11 was unequivocally established by X-ray diffraction, which indirectly proved the structure of 10 as well. Ring opening of 11 by nucleophilic attack with benzylamine 14 in C2-position and subsequent recyclization led to racemic 3-chloro-5-hydroxy-2-oxo-2,5-dihydropyrrole 15. According to a single crystal X-ray analysis, 15 aggregates via stereospecific self selection through hydrogen bonds to give chiroselectively the one-dimensional strands ∞1[(S)-15] and ∞1[( R)-15]


2010 ◽  
Vol 65 (4) ◽  
pp. 475-478
Author(s):  
Guido D. Frey ◽  
Eberhardt Herdtweck

The crystal structure of the stable nitroxide radical 3-(N-methoxy-N-methylcarbamoyl)-2,2,5,5- tetramethyl-1-oxy-pyrroline was determined from single-crystal X-ray data: orthorhombic, space group Pbca (no. 61), a = 9.0213(1), b = 12.8625(1), c = 21.2406(2) Å, V = 2464.68(4) Å3 and Z = 8. The adjacent molecules assemble to a supramolecular layer structure in the solid state, linked by two intermolecular C-H...O hydrogen bonds.


Sign in / Sign up

Export Citation Format

Share Document