Phase equilibrium in the Gd-Ni-In system at 870 K

2019 ◽  
Vol 74 (7-8) ◽  
pp. 613-618
Author(s):  
Vasyl’ Zaremba ◽  
Mariya Dzevenko ◽  
Rainer Pöttgen ◽  
Yaroslav Kalychak

AbstractThe isothermal section of the Gd-Ni-In system at T = 870 K was constructed by means of X-ray powder diffraction and EDX analyses. Thirteen ternary compounds, namely GdNi9In2 (YNi9In2 type), Gd1−1.22Ni4In1-0.78 (MgCu4Sn type), GdNiIn2 (MgCuAl2 type), Gd4Ni11In20 (U4Ni11Ga20 type), GdNi1.0-0.7In1.0-1.3 (ZrNiAl type), Gd2Ni2In (Mn2AlB2 type), Gd2Ni1.78In (Mo2FeB2 type), Gd11Ni4In9 (Nd11Pd4In9 type), Gd12Ni6In (Sm12Ni6In type), Gd6Ni2.39In0.61 (Ho6Co2Ga type), Gd14Ni3.29In2.71 (Lu14Co3In3 type), Gd3Ni0.05In0.95 (AuCu3 type) and ~Gd6Ni2In exist in the Gd-Ni-In system at this temperature. The substitution of Ni for In was observed for GdNi1.0-0.7In1.0-1.3 and of In for Gd for Gd1-1.22Ni4In1-0.78. Besides, Gd can enter the structure of NiIn (CoSn type) leading to a solid solution Gd0-0.14NiIn1-0.98.

2013 ◽  
Vol 11 (4) ◽  
pp. 604-609 ◽  
Author(s):  
Mariya Dzevenko ◽  
Andriy Hamyk ◽  
Yuriy Tyvanchuk ◽  
Yaroslav Kalychak

AbstractIsothermal section of the Er-Co-In system at T = 870 K was constructed by means of X-ray powder diffraction, microstructure, and EDX-analyses. Twelve ternary compounds, namely ErCoIn5 (HoCoGa5-type), Er6Co17.92In14 (Lu6Co17.92In14-type), ErCo4In (MgCu4Sn-type), Er2CoIn8 (Ho2CoGa8-type), Er10Co9In20 (Ho10Ni9In20-type), Er3Co1.87In4 (Lu3Co1.87In4-type), ErCoIn, Er11Co4In9 (Nd11Pd4In9-type), Er11Co3In6, Er8CoIn3 (Pr8CoGa3-type), Er6Co2.19In0.81 (Ho6Co2Ga-type), and Er13.83Co2.88In3.10 (Lu14Co2In3-type) exist in the Er-Co-In system at this temperature. The crystal structure of the Er8CoIn3 compound was determined by means of X-ray powder method (Pr8CoGa3-type, P63mc space group, a = 1.02374(2) nm, c = 0.68759(2) nm). Almost none of the binary compounds dissolve the third component. The exception is the existence of the solid solution based on ErCo3 binary compound, which dissolves up to 8 at.% of In.


2019 ◽  
Vol 19 (2) ◽  
pp. 139-146
Author(s):  
L. Romaka ◽  
I. Romaniv ◽  
V. Romaka ◽  
M. Konyk ◽  
A. Horyn ◽  
...  

The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho–Cu–Sn system at 670 K: HoCuSn (LiGaGe type, space group P63mc), Ho3Cu4Sn4 (Gd3Cu4Ge4-type, space group Immm), HoCu5Sn (CeCu5Au-type, space group Pnma), and Ho1.9Cu9.2Sn2.8 (Dy1.9Cu9.2Sn2.8-type, space group P63/mmc). The formation of the interstitial solid solution based on HoSn2 (ZrSi2-type) binary compound up to 5 at. % Cu was found.


1995 ◽  
Vol 10 (3) ◽  
pp. 189-194 ◽  
Author(s):  
C. L. Lengauer ◽  
G. Giester

The kieserite-type solid-solution series of synthetic (Cu,Mg)SO4·H2O was investigated by TG-analysis and X-ray powder diffraction using the Rietveld method. Representatives with Cu≥20 mol% are triclinic distorted () analogous to the poitevinite (Cu,Fe)SO4·H2O compounds. Cation site ordering with preference of Cu for the more distorted M1 site was additionally proven by the structure refinement.


2009 ◽  
Vol 64 (10) ◽  
pp. 1107-1114 ◽  
Author(s):  
Thomas Harmening ◽  
Matthias Eul ◽  
Rainer Pöttgen

New nickel-deficient stannides Eu2Ni2−xSn5 were synthesized by induction melting of the elements in sealed tantalum tubes. The solid solution was studied by X-ray powder diffraction and two crystal structures were refined on the basis of X-ray diffractometer data: Cmcm, a = 466.03(4), b = 3843.1(8), c = 462.92(9) pm, wR2 = 0.0469, 692 F2 values, 39 variables for Eu2Ni1.49(1)Sn5 and a = 466.11(9), b = 3820.1(8), c = 462.51(9) pm, wR2 = 0.0358, 695 F2 values, 39 variables for Eu2Ni1.35(1)Sn5. This new structure type can be considered as an intergrowth structure of CaBe2Ge2- and CrB-related slabs. The striking structural motifs are nickel-centered square pyramids which are condensed via common corners and edges. The layers of condensed NiSn5 units are separated by the europium atoms. The Ni1 sites within the CaBe2Ge2 slabs show significant defects which leads to split positions for one tin site. Eu2Ni1.50Sn5 shows Curie-Weiss behavior and an experimental magnetic moment of 7.74(1) μB / Eu atom, indicating stable divalent europium, as is also evident from 151Eu Mössbauer spectra. Antiferromagnetic ordering is detected at 3.5 K.


1969 ◽  
Vol 13 ◽  
pp. 539-549
Author(s):  
Gerald G. Johnson ◽  
Frank L. Chan

Since for most real systems, solid solution effects influence the position and intensity of the x-ray powder diffraction pattern, it is desirable and necessary to have an automatic system which will identify standard reference phases regardless of the amount of solid solution. Using the system CdS-ZnS, where the lattice parameter a0 changes from 4.136 to 3.820Å, with complete solid solution over the entire range of composition, an illustrative study was made. This work presents the results obtained from a computer analysis of the powder pattern obtained. It has been found that if the starting chemistry is known and the end members of the series are in the ASTM Powder Diffraction File, that the solid solution can be identified. Once the phases present are identified, a plot following Vegard's law yields the approximate composition of the sample under consideration. These two methods of compositional determination agree quite well. Examples of the computer system and description of the program input and output with interpretation of the results will be discussed.


2016 ◽  
Vol 1735 ◽  
Author(s):  
Barys V. Korzun ◽  
Valery R. Sobol ◽  
Marin Rusu ◽  
Ruben M. Savizky ◽  
Alena A. Fadzeyeva ◽  
...  

ABSTRACTThe CuInSe2 and CuSbSe2 ternary compounds and alloys of the (CuSbSe2)1-x·(CuInSe2)x system with the mole fraction of CuInSe2 (x) equal to 0.05, 0.15, 0.25, 0.375, 0.50, 0.625, 0.75, 0.85, and 0.95 were prepared and the phase relations in this system were investigated by X-ray powder diffraction, optical microscopy, and scanning electron microscopy. It was shown that the alloys of the CuSbSe2-CuInSe2 system are biphasic at room temperature in the whole range of compositions, and the limits of solubility for CuSbSe2 in CuInSe2 and for CuInSe2 in CuSbSe2 do not exceed 0.001 mole fraction.


1996 ◽  
Vol 11 (4) ◽  
pp. 268-275 ◽  
Author(s):  
Winnie Wong-Ng ◽  
F. Jiang ◽  
Bryan R. Jarabek ◽  
Gregory J. McCarthy

Powder X-ray diffraction was used to investigate the solid solution range of the Bi14SrxCa12−xO33 series in the Bi–Sr–Ca–O system. Solid solution forms over the range 1≤x≤7 in Bi14SrxCa12−xO33. Experimental X-ray reference patterns of selected members with x=1, 3, 5, and 7 have been prepared for the powder diffraction file (PDF). These phases are monoclinic, C2/m, with cell parameter a ranging from 21.473(4) to 21.868(4) Å, b from 4.3564(9) to 4.3898(9) Å, c from 12.753(2) to 12.962(2) Å, β from 102.91(2)° to 102.79(1)°, and V from 1162.9(3) to 1213.5(3) Å3, respectively. These parameters increase monotonically as Ca is continuously replaced by the larger Sr.


Sign in / Sign up

Export Citation Format

Share Document