Two 2D Co(II)/Mn(II) coordination polymers based on the quinoline-2,3-dicarboxylate ligand: synthesis, crystal structure, and fluorescence properties

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ya-Li Zhao ◽  
Qi-Ying Weng ◽  
Yu-Qian Xie ◽  
Jia-Ming Li

Abstract A pair of two-dimensional (2D) isostructural coordination polymers (CPs), {[Co(2,3-qldc)(H2O)]} n (1) and {[Mn(2,3-qldc)(H2O)]} n (2), where 2,3-H2qldc = quinoline-2,3-dicarboxylic acid, were hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis, power X-ray diffraction, and single-crystal X-ray diffraction. The results have revealed that the fully deprotonated 2,3-H2qldc ligand connects the Co(II)/Mn(II) atoms with a μ 3-bridge to form a square-wave 2D network, which is further extended into 3D stacks through O–H···O, C–H···O hydrogen bonds and π···π stacking interactions. Topologically, 1 or 2 can be simplified as a 4-connected sql type with a Schläfli symbol {44·62} and a Shubnikov tetragonal plane net, or as a 3-connected fes type with a Schläfli symbol {4·82} and a Shubnikov plane net. The thermal stability and the solid state fluorescence properties of 1 and 2 were investigated.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Runmei Ding ◽  
Zixin He ◽  
Meilin Wang ◽  
Danian Tian ◽  
Peipei Cen

AbstractBased on 2-(4-pyridyl)-terephthalate (H2pta) and oxalate ligands, two new lanthanide-containing coordination polymers (CPs), [Tb(pta)(C2O4)0.5(H2O)2)]·2H2O (1) and [Sm(pta)(C2O4)0.5(H2O)2)]·2H2O (2), have been synthesized under solvothermal conditions. The structures of both 1 and 2 have been determined by single-crystal X-ray diffraction. Infrared, elemental analysis, powder X-ray diffraction and thermogravimetric analysis data are also presented. The crystals of 1 and 2 exhibit isostructural layer-like networks, crystallizing in the triclinic space group P$‾{1}$. The layers are further stabilized and associated into 3D architectures through hydrogen bonding. Remarkably, the CPs 1 and 2 exhibit excellent water stability and remarkable thermostability with thermal decomposition temperatures of more than 420 °C.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5400
Author(s):  
Roman D. Marchenko ◽  
Taisiya S. Sukhikh ◽  
Alexey A. Ryadun ◽  
Andrei S. Potapov

Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.


2019 ◽  
Vol 75 (7) ◽  
pp. 979-984 ◽  
Author(s):  
Chen-Dong Pan ◽  
Jun Wang ◽  
Ju-Qin Xu ◽  
Kang-Feng Zhang ◽  
Xiao-Wan Wang

The Fe3+ ion is the most important element in environmental systems and plays a fundamental role in biological processes. Iron deficiency can result in diseases and highly selective and sensitive detection of trace Fe3+ has become a hot topic. A novel two-dimensional ZnII coordination framework, poly[[μ-4,4′-bis(2-methylimidazol-1-yl)diphenyl ether-κ2 N 3:N 3′](μ-4,4′-sulfonyldibenzoato-κ2 O:O′)zinc(II)], [Zn(C14H8O6S)(C20H18N4O)] n or [Zn(SDBA)(BMIOPE)] n , (I), where H2SDBA is 4,4′-sulfonyldibenzoic acid and BMIOPE is 4,4′-bis(2-methylimidazol-1-yl)diphenyl ether, has been prepared and characterized by IR, elemental analysis, thermal analysis and X-ray diffraction analysis, the latter showing that the coordination polymer exhibits a threefold interpenetrating two-dimensional 44-sql network. In addition, it displays a highly selective and sensitive sensing for Fe3+ ions in aqueous solution.


2015 ◽  
Vol 71 (7) ◽  
pp. 618-622 ◽  
Author(s):  
Shao-Ming Ying ◽  
Jing-Jing Ru ◽  
Wu-Kui Luo

Metal–organic frameworks (MOFs) have potentially useful applications and an intriguing variety of architectures and topologies. Two homochiral coordination polymers have been synthesized by the hydrothermal method, namely poly[(μ-N-benzyl-L-phenylalaninato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C16H16NO2)(HCOO)]n, (1), and poly[(μ-N-benzyl-L-leucinato-κ4O,O′:O,N)(μ-formato-κ2O:O′)zinc(II)], [Zn(C13H18NO2)(HCOO)]n, (2), and studied by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy and fluorescence spectroscopy. Compounds (1) and (2) each have a two-dimensional layer structure, with the benzyl or isobutyl groups of the ligands directed towards the interlayer interface. Photoluminescence investigations show that both (1) and (2) display a strong emission in the blue region.


2018 ◽  
Vol 74 (10) ◽  
pp. 1123-1127 ◽  
Author(s):  
Ning-Ning Chen ◽  
Jian-Ling Ni ◽  
Jun Wang

A novel two-dimensional CoII coordination framework, namely poly[(μ2-biphenyl-4,4′-diyldicarboxylato-κ2 O 4:O 4′){μ2-bis[4-(2-methyl-1H-imidazol-1-yl)phenyl] ether-κ2 N 3:N 3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)] n , has been prepared and characterized by IR, elemental analysis, thermal analysis and single-crystal X-ray diffraction. The crystal structure reveals that the compound has an achiral two-dimensional layered structure based on opposite-handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.


2020 ◽  
Vol 75 (8) ◽  
pp. 727-732
Author(s):  
Chen Zhang ◽  
Jian-Qing Tao

AbstractA new Cu(II) metal-organic framework, [Cu(L)(OBA)·H2O]n (1) [H2OBA = 4,4′-oxybis(benzoic acid), L = 3,5-di(1H-benzimidazol-1-yl)pyridine] was hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis and single-crystal X-ray diffraction. Complex 1 is a four-connected uni-nodal 2D net with a (44·62) topology which shows an emission centered at λ ∼393 nm upon excitation at λ = 245 nm. Moreover, complex 1 possesses high photocatalytic activities for the decomposition of Rhodamine B (RhB) under UV light irradiation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinzhao Xia ◽  
Lixian Xia ◽  
Geng Zhang ◽  
Yuxuan Jiang ◽  
Fugang Sun ◽  
...  

Abstract In this work, a new type of zinc(II) coordination polymer {[Zn(HIDC)(BBM)0.5]·H2O} n (Zn-CP) was synthesized using 4,5-imidazoledicarboxylic acid (H3IDC) and 2,2-(1,4-butanediyl)bis-1,3-benzimidazole (BBM) under hydrothermal conditions. Its structure has been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction analysis. The Zn(II) ion is linked by the HIDC2− ligand to form a zigzag chain by chelating and bridging, and then linked by BBM to form a layered network structure. Adjacent layers are further connected by hydrogen bond interaction to form a 3-D supramolecular framework. The solid-state fluorescence performance of Zn-CP shows that compared with free H3IDC ligand, its fluorescence intensity is significantly enhanced.


Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 54
Author(s):  
Giacomo Manfroni ◽  
Simona S. Capomolla ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The isomers 4′-(4-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (1), 4′-(3-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (2), 4′-(4-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (3), and 4′-(3-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (4) have been prepared and characterized. The single crystal structures of 1 and 2 were determined. The 1D-polymers [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione), [Cu(hfacac)2(2)]n.2nC6H5Me, [Cu2(hfacac)4(3)2]n.nC6H4Cl2, [Cu2(hfacac)4(3)2]n.nC6H5Cl, and [Cu(hfacac)2(4)]n.nC6H5Cl have been formed by reactions of 1, 2, 3 and 4 with [Cu(hfacac)2].H2O under conditions of crystal growth by layering and four of these coordination polymers have been formed on a preparative scale. [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 and [Cu(hfacac)2(2)]n.2nC6H5Me are zig-zag chains and the different substitution position of the CF3 group in 1 and 2 does not affect this motif. Packing of the polymer chains is governed mainly by C–F...F–C contacts, and there are no inter-polymer π-stacking interactions. The conformation of the 3,2′:6′,3″-tpy unit in [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl differs, leading to different structural motifs in the 1D-polymer backbones. In [Cu(hfacac)2(4)]n.nC6H5Cl, the peripheral 3-CF3C6H4 unit is accommodated in a pocket between two {Cu(hfacac)2} units and engages in four C–Hphenyl...F–Chfacac contacts which lock the phenylpyridine unit in a near planar conformation. In [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl, π-stacking interactions between 4′-trifluoromethylphenyl-3,2′:6′,3″-tpy domains are key packing interactions, and this contrasts with the packing of polymers incorporating 1 and 2. We use powder X-ray diffraction to demonstrate that the assemblies of the coordination polymers are reproducible, and that a switch from a 4,2′:6′,4″- to 3,2′:6′,3″-tpy metal-binding unit is accompanied by a change from dominant C–F...F–C and C–F...H–C contacts to π-stacking of arene domains between ligands 3 or 4.


2020 ◽  
Vol 235 (8-9) ◽  
pp. 311-317
Author(s):  
Stephan G. Jantz ◽  
Florian Pielnhofer ◽  
Henning A. Höppe

Abstract${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ was discovered as a frequently observed side phase during our investigation on lead tungstates. Its crystal structure was solved by single-crystal X-ray diffraction ($P{2}_{1}/n$, $a=7.4379\left(2\right)$ Å, $b=12.1115\left(4\right)$ Å, $c=10.6171\left(3\right)$ Å, $\beta =90.6847\left(8\right)$°, $Z=4$, ${R}_{\text{int}}=0.038$, ${R}_{1}=0.020$, $\omega {R}_{2}=0.029$, 4188 data, 128 param.) and is isotypic with ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{Te}}_{6}\right]$. ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ comprises a layered structure built up by non-condensed [WO6]${}^{6-}$ octahedra and ${\left[{\text{O}}_{4}{\text{Pb}}_{10}\right]}^{12+}$ oligomers. The compound was characterised by spectroscopic measurements (Infrared (IR), Raman and Ultraviolet–visible (UV/Vis) spectra) as well as quantum chemical and electrostatic calculations (density functional theory (DFT), MAPLE) yielding a band gap of 2.9 eV fitting well with the optical one of 2.8 eV. An estimation of the refractive index based on the Gladstone-Dale relationship yielded $n\approx 2.31$. Furthermore first results of the thermal analysis are presented.


2020 ◽  
Vol 75 (4) ◽  
pp. 365-369
Author(s):  
Long Tang ◽  
Yu Pei Fu ◽  
Na Cui ◽  
Ji Jiang Wang ◽  
Xiang Yang Hou ◽  
...  

AbstractA new metal-organic framework, [Pb(hmpcaH)2]n (1), has been hydrothermally synthesized from Pb(OAc)2 · 3H2O and 2-hydroxy-6-methylpyridine-4-carboxylic acid (hmpcaH2; 2), and characterized by IR spectroscopy, elemental and thermogravimetric analysis, and single-crystal X-ray diffraction. In complex 1, each hmpcaH− ligand represents a three-connected node to combine with the hexacoordinated Pb(II) ions, generating a 3D binodal (3,6)-connected ant network. The crystal structure of 2 was determined. The solid-state fluorescence properties of 1 and 2 were investigated.


Sign in / Sign up

Export Citation Format

Share Document