Various Metallopheophorbides as Substrates for Chlorophyll Synthetase

1992 ◽  
Vol 47 (3-4) ◽  
pp. 231-238 ◽  
Author(s):  
Michael Helfrich ◽  
Wolfhart Rüdiger

Abstract Pheophorbide a was prepared from a mixture of chlorophylls a and b by differential extraction with HCl and saponification. The insertion of the following metal ions was investigated: Mg, Zn, Co, Cu, Ni. In the enzyme test with chlorophyll synthetase, the metallopheophorbides fall into two categories: the Mg- and Zn-complexes are good substrates, the Co-, Cu- and Ni-complexes are neither substrates nor competitive inhibitors for the enzyme reaction. This corresponds to two categories of complex structures: Mg- and Zn-porphyrins prefer pentacoordinate square-pyramidal structures, Co-, Cu- and Ni-porphyrins prefer tetracoordinate square-planar structures. A model for substrate binding to chlorophyll synthetase is proposed.

2011 ◽  
Vol 392 (1-2) ◽  
Author(s):  
Byron C.H. Chu ◽  
Hans J. Vogel

AbstractInEscherichia colithe Fhu, Fep and Fec transport systems are involved in the uptake of chelated ferric iron-siderophore complexes, whereas in pathogenic strains heme can also be used as an iron source. An essential step in these pathways is the movement of the ferric-siderophore complex or heme from the outer membrane transporter across the periplasm to the cognate cytoplasmic membrane ATP-dependent transporter. This is accomplished in each case by a dedicated periplasmic binding protein (PBP). Ferric-siderophore binding PBPs belong to the PBP protein superfamily and adopt a bilobal type III structural fold in which the two independently folded amino and carboxy terminal domains are linked together by a single long α-helix of approximately 20 amino acids. Recent structural studies reveal how the PBPs of the Fhu, Fep, Fec and Chu systems are able to bind their corresponding ligands. These complex structures will be discussed and placed in the context of our current understanding of the entire type III family of Gram-negative periplasmic binding proteins and related Gram-positive substrate binding proteins.


1991 ◽  
Vol 279 (2) ◽  
pp. 343-350 ◽  
Author(s):  
J Nari ◽  
G Noat ◽  
J Ricard

The hydrolysis of p-nitrophenyl acetate catalysed by pectin methylesterase is competitively inhibited by pectin and does not require metal ions to occur. The results suggest that the activastion by metal ions may be explained by assuming that they interact with the substrate rather than with the enzyme. With pectin used as substrate, metal ions are required in order to allow the hydrolysis to occur in the presence of pectin methylesterase. This is explained by the existence of ‘blocks’ of carboxy groups on pectin that may trap enzyme molecules and thus prevent the enzyme reaction occurring. Metal ions may interact with these negatively charged groups, thus allowing the enzyme to interact with the ester bonds to be cleaved. At high concentrations, however, metal ions inhibit the enzyme reaction. This is again understandable on the basis of the view that some carboxy groups must be adjacent to the ester bond to be cleaved in order to allow the reaction to proceed. Indeed, if these groups are blocked by metal ions, the enzyme reaction cannot occur, and this is the reason for the apparent inhibition of the reaction by high concentrations of metal ions. Methylene Blue, which may be bound to pectin, may replace metal ions in the ‘activation’ and ‘inhibition’ of the enzyme reaction. A kinetic model based on these results has been proposed and fits the kinetic data very well. All the available results favour the view that metal ions do not affect the reaction through a direct interaction with enzyme, but rather with pectin.


2020 ◽  
pp. 2762-2775 ◽  
Author(s):  
Hayder Hamied Mihsen ◽  
Suhad Kareem Abass ◽  
Maysaa Taqe Abed –Alhasan ◽  
Zainab M. Hassan ◽  
Ali Kreem Abass

Binuclear metal complexes of the metal ions Fe (II), Co (II), Ni (II) and Cu (II) were synthesized by the reaction of these metal ions with the imine of benzidine (H2L) as a primary ligand and o-phenylenediammine (OPD) as a secondary ligand  in a molar ratio of 2:2:1. The prepared complexes were characterized using CHN elemental analysis, FT-IR, UV-visible, molar conductivity, magnetic susceptibility and TGA-DTA thermogravimetric analysis. All the prepared complexes showed apparent stability and could be stored for months without any appreciable change. According to the results obtained by elemental and spectral analyses, a tetrahedral structure is suggested for all the prepared complexes, except for the copper complex which showed a square planar structure. The antimicrobial activities of these complexes were evaluated against Bacillus spp. (Gram-negative bacteria), Proteus spp. (Gram-positive bacteria) and Aspergillus niger (A. niger, a fungal species). The results showed that all the prepared complexes have no apparent effects on Bacillus spp. viability, whereas Proteus spp.  and A. niger were affected significantly.


1987 ◽  
Vol 65 (7) ◽  
pp. 1485-1490 ◽  
Author(s):  
M. N. Bakola-Christianopoulou ◽  
P. D. Akrivos ◽  
M. Baumgarten

Homobinuclear metal chelate complexes having 1,4-dihydroxy-9,10-anthracenedione (quinizarin) as a bridging unit have been prepared with four bivalent first row transition elements, namely cobalt, nickel, copper, and zinc. The coordination spheres of the metal ions consist of two nearly equivalent six-membered rings with oxygen donor atoms derived from the quinizarin and the terminal ligands which are either β-diketones or salicylic aldehyde. TG, spectroscopic (ir, uv–vis, epr), and magnetic measurements have been applied to an investigation of the geometry adopted by the MO4 chromophores. The results are consistent with varying degrees of distortion from the ideal square planar toward a tetrahedral arrangement around the metal ions, closely related to the specific metal center involved.


2020 ◽  
Vol 21 (22) ◽  
pp. 8709
Author(s):  
Ido Rippin ◽  
Netaly Khazanov ◽  
Shirley Ben Joseph ◽  
Tania Kudinov ◽  
Eva Berent ◽  
...  

The serine/threonine kinase, GSK-3, is a promising drug discovery target for treating multiple pathological disorders. Most GSK-3 inhibitors that were developed function as ATP competitive inhibitors, with typical limitations in specificity, safety and drug-induced resistance. In contrast, substrate competitive inhibitors (SCIs), are considered highly selective, and more suitable for clinical practice. The development of SCIs has been largely neglected in the past because the ambiguous, undefined nature of the substrate-binding site makes them difficult to design. In this study, we used our previously described structural models of GSK-3 bound to SCI peptides, to design a pharmacophore model and to virtually screen the “drug-like” Zinc database (~6.3 million compounds). We identified leading hits that interact with critical binding elements in the GSK-3 substrate binding site and are chemically distinct from known GSK-3 inhibitors. Accordingly, novel GSK-3 SCI compounds were designed and synthesized with IC50 values of~1–4 μM. Biological activity of the SCI compound was confirmed in cells and in primary neurons that showed increased β-catenin levels and reduced tau phosphorylation in response to compound treatment. We have generated a new type of small molecule GSK-3 inhibitors and propose to use this strategy to further develop SCIs for other protein kinases.


1988 ◽  
Vol 66 (3) ◽  
pp. 238-243 ◽  
Author(s):  
Toolsee J. Singh

The specificity of glycogen synthase (casein) kinase-1 (CK-1) for different divalent metal ions was explored in this study. Of nine metal ions (Mg2+, Mn2+, Zn2+, Cu2+, Ca2+, Ba2+, Ni2+, Co2+, Fe2+) tested, only Mg2+ supported significant kinase activity. Several of the other metals, however, inhibited the Mg2+-stimulated kinase activity. Half-maximal inhibitions by Mn2+, Zn2+, Co2+, Fe2+, and Ni2+ were observed at 55, 65, 110, 125, and 284 μM, respectively. Kinetic analyses indicate that the metal ions are acting as competitive inhibitors of CK-1 with respect to the protein substrate (casein) and as noncompetitive inhibitors with respect to the nucleotide substrate (ATP). The inhibition of CK-1 by the different metal ions can be reversed by EGTA.


2016 ◽  
Vol 12 (11) ◽  
pp. 3259-3265 ◽  
Author(s):  
Jyoti Singh Tomar ◽  
Manju Narwal ◽  
Pravindra Kumar ◽  
Rama Krishna Peddinti

The binding parameters of substrates with enzyme TAG revealed that it exhibits selectivity for 3mA over the normal adenine base. The results obtained from the experiments are useful in designing of competitive inhibitors.


Sign in / Sign up

Export Citation Format

Share Document