On the Orientation of Photosystem II Inhibitors in the QB-Binding Niche: Acridones, Xanthones and Quinones

1993 ◽  
Vol 48 (3-4) ◽  
pp. 146-151 ◽  
Author(s):  
Walter Oettmeier ◽  
Klaus Masson ◽  
Ralf Kloos ◽  
Ellen Reil

Abstract The orientation of acridones, xanthones, 1,4-benzo-and naphthoquinones within the photosystem II QB herbicide-binding niche was studied by means of mild trypsination and by estimation of pI50-values in Chlamydomonas reinhardtii D 1 mutants (Val219 > lie, Ala251 > Val, Phe255 > Tyr, Ser264 > Ala, Asn266 > Thr, and Leu275 > Phe). As judged from the R/S-values (ratios of I50 -values resistant versus susceptible type) close to 1 in all mutants, the acridones and xanthones do not have strong interactions with the parent amino acids. Contrary, the quinones exhibit extreme low R/S-values down to 0.003 (for 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone; DBMIB) in the Ser264 mutant. This extreme negative cross resistance or supersensitivity indicates that the quinones do not form a hydrogen bond to the serine hydroxyl group.

1993 ◽  
Vol 48 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Simon P. Mackay ◽  
Patrick J. O ’Malley

Abstract The prefered binding orientations for the herbicide DCMU within the QB-binding site of the D 1 protein model from a photosystem II reaction centre have been determined. Calculation of the intermolecular energy between the herbicide and the binding site has been instrumental in obtaining optimum positions reinforced by experimental results from mutation studies and herbicide binding to analogous bacterial reaction centres. We have shown that two binding sites are possible, one involving a hydrogen bond to and the other to the Ser 264 residue. In both cases, which are more important for the stabilization of the interactions.


2006 ◽  
Vol 84 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Stephan Wilski ◽  
Udo Johanningmeier ◽  
Silvia Hertel ◽  
Walter Oettmeier

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3279
Author(s):  
Ilma Nugrahani ◽  
Maria Anabella Jessica

Co-crystals are one of the most popular ways to modify the physicochemical properties of active pharmaceutical ingredients (API) without changing pharmacological activity through non-covalent interactions with one or more co-formers. A “green method” has recently prompted many researchers to develop solvent-free techniques or minimize solvents for arranging the eco-friendlier process of co-crystallization. Researchers have also been looking for less-risk co-formers that produce the desired API’s physicochemical properties. This review purposed to collect the report studies of amino acids as the safe co-former and explored their advantages. Structurally, amino acids are promising co-former candidates as they have functional groups that can form hydrogen bonds and increase stability through zwitterionic moieties, which support strong interactions. The co-crystals and deep eutectic solvent yielded from this natural compound have been proven to improve pharmaceutical performance. For example, l-glutamine could reduce the side effects of mesalamine through an acid-base stabilizing effect in the gastrointestinal fluid. In addition, some amino acids, especially l-proline, enhances API’s solubility and absorption in its natural deep eutectic solvent and co-crystals systems. Moreover, some ionic co-crystals of amino acids have also been designed to increase chiral resolution. Therefore, amino acids are safe potential co-formers, which are suitable for improving the physicochemical properties of API and prospective to be developed further in the dosage formula and solid-state syntheses.


Biochemistry ◽  
2005 ◽  
Vol 44 (28) ◽  
pp. 9746-9757 ◽  
Author(s):  
Boris K. Semin ◽  
Elena R. Lovyagina ◽  
Kirill N. Timofeev ◽  
Ilya I. Ivanov ◽  
Andrei B. Rubin ◽  
...  

In the article the results of the quantum chemical study of copper (II) solvato-complexes with acetonitrile (AN), tetrafluoroborate anion (BF4–) and 3-hydroxyflavone (flv) of the composition [Cu(AN)6]2+, [Cu(BF4)(AN)5]+, [Cu(flv)(AN)5]2+, [Cu(flv)(BF4)(AN)4]+ are presented. Calculations were done using density function theory (DFT) on the M06-2X/6-311++G(d,p) level of theory. Obtained results were interpreted in terms of complexes geometry and topology of electron density distribution using non-covalent interactions (NCI) approach. It was shown that flv molecule is a monodentate ligand in copper (II) complexes and coordinates central atom via carbonyl oxygen. Intramolecular hydrogen bond that exists in an isolated flv molecule was found to be broken upon [Cu(flv)(AN)5]2+ complex formation. In [Cu(flv)(AN)5]2+ complex, a significant rotation of phenyl ring over the planar chromone fragment was spotted as a consequence of intramolecular hydrogen bond breaking. Upon inclusion of BF4– anion to the first solvation shell of Cu2+, an intracomplex hydrogen bond was formed between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion. NCI analysis had shown that a hydrogen bond between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4– anion is significantly stronger than intramolecular hydrogen bond in an isolated flv molecule. In addition, flexible phenyl ring of flv molecule in [Cu(flv)(BF4)(AN)4]+ complex was found to be internally stabilized by the weak van der Waals attraction between oxygen atoms of chromone ring and phenyl hydrogens. These evidences led to a conclusion that [Cu(flv)(BF4)(AN)4]+ complex is more stable, comparing to the in [Cu(flv)(AN)5]2+ complex.


1998 ◽  
Vol 123 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Kyu H. Chung ◽  
Dennis E. Buetow ◽  
Schuyler S. Korban

A nuclear gene, Lhcb1*Pp1, encoding a light-harvesting chlorophyll a/b-binding protein of photosystem II has been isolated from peach [Prunus persica (L.) Batsch. `Stark Earliglo'] leaf genomic DNA, cloned, and sequenced. This gene encodes a precursor polypeptide of 267 amino acids with a transit peptide of 34 and a type I mature protein of 233 amino acids. The amino acid sequence of the mature polypeptide is 89% to 94% and 80% to 94% similar to those encoded by type I Lhcb genes of annual and other woody plants, respectively. In contrast, the amino acid sequence of the peach transit peptide is less conserved being 47% to 69% similar to those of annual plants and only 17% to 22% similar to those of other woody plants. The peach gene was used as a probe for Lhcb gene expression. Lhcb mRNA is detected in leaves of field-grown trees during June to October. Lhcb mRNA is detected at a high level in leaves of peach shoots grown in tissue culture in the light, but only at a trace level in leaves grown in the dark. Some Lhcb genes appear to be light-modulated in stems. Lhcb1*Ppl contains four potential polyadenylation sites. S1 nuclease analysis detected transcripts of the sizes expected from each of the four polyadenylation sites. All four are found in leaves of light-grown shoots and of field-grown trees throughout the growing season. In contrast, only three are detected in stems of light-grown shoots.


1987 ◽  
Vol 42 (7-8) ◽  
pp. 762-768 ◽  
Author(s):  
Wim F. J. Vermaas ◽  
John G. K. Williams ◽  
Charles J. Arntzen

Site-directed mutations were created in the cyanobacterium Synechocystis 6803 to alter specific histidine residues of the photosystem II (PS II) D2 protein. In one mutant (tyr-197). the his-197 residue was replaced by tyrosine, in another mutant (asn-214), his-214 was changed into asparagine. The tyr-197 mutant did not show any low-temperature fluorescence attributable to PS II. but contained a PS II chlorophyll-protein, CP-47, in significant quantities. Another PS II chlorophyll-protein, CP-43, was absent, as was PS II-related herbicide binding. The asn-214 mutant showed a blue-shifted low-temperature fluorescence maximum around 682 nm. but did not have a significant amount of membrane-incorporated CP-43 or CP-47. Herbicide binding was also absent in this mutant. These data indicate a very important role of the his-197 and his-214 residues in the D 2 protein, and are interpreted to support the hypothesis that the D2 protein and the M subunit from the photosynthetic reaction center of purple bacteria have analogous functions. According to this hypothesis, his-197 is involved in binding of P680. and his-214 forms ligands with Qᴀ and Fe2+. In absence of a functional D2 protein, the PS II core complex appears to be destabilized as evidenced by loss of chlorophyll-proteins in the mutants.


Sign in / Sign up

Export Citation Format

Share Document