Latent Oxidative Stress Responses of Ozone-Fumigated Cucumber Plants Are Enhanced by Simultaneous Cold Exposures

1996 ◽  
Vol 51 (5-6) ◽  
pp. 355-362
Author(s):  
Peter Streb ◽  
Hermann Schaub ◽  
Jürgen Feierabend

Abstract Cucumber plants (Cucumis sativus L.) were grown under controlled conditions and fumigated with either O3, diluted automobile exhaust or a combination of both. The ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) was estimated as a measure of PSII activity Activities of the enzymes catalase, glutathione reductase and guaiacol-dependent peroxidase and contents of the antioxidants ascorbate and glutathione were assayed as potential indicators of oxidative stress. The behavior of catalase and of PSII are of particular diagnostic interest because they require continuous repair in light. Exposures of up to 13 days to moderate concentrations of the pollutant gases alone did not induce striking changes in any of the activities that were assayed. A lso when the plants were subjected to an additional stress treatment by exposing them to 4 short cold treatments (2h each at 0 - 4 °C in light on days 12-15 after sowing) which induced marked declines of the Fv/Fm ratio, the chlorophyll content and the catalase activity, these cold-induced symptoms of photodamage were not significantly enhanced by the fumigation treatments. However, increases of the activities of glutathione reductase and peroxidase observed during a period of recovery following the cold-exposures were markedly higher in O3-fumigated plants, as compared to plants grown in filtered air or fumigated with car exhaust alone. The results emphasize that effects of moderate pollutant exposures may be latent or delayed over long time periods and that defence responses can be enhanced when plants are exposed to additional, naturally occurring stress situations.

Author(s):  
Metti K. Gari ◽  
Paul Lemke ◽  
Kelly H. Lu ◽  
Elizabeth D. Laudadio ◽  
Austin H. Henke ◽  
...  

Lithium cobalt oxide (LiCoO2), an example of nanoscale transition metal oxide and a widely commercialized cathode material in lithium ion batteries, has been shown to induce oxidative stress and generate intracellular reactive oxygen species (ROS) in model organisms.


Author(s):  
Huaming He ◽  
Jordi Denecker ◽  
Katrien Van Der Kelen ◽  
Patrick Willems ◽  
Robin Pottie ◽  
...  

Abstract Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


2021 ◽  
Vol 72 (8) ◽  
pp. 3294-3306
Author(s):  
Ariel M Hughes ◽  
H Tucker Hallmark ◽  
Lenka Plačková ◽  
Ondrej Novák ◽  
Aaron M Rashotte

Abstract Cytokinin response factors (CRFs) are transcription factors that are involved in cytokinin (CK) response, as well as being linked to abiotic stress tolerance. In particular, oxidative stress responses are activated by Clade III CRF members, such as AtCRF6. Here we explored the relationships between Clade III CRFs and oxidative stress. Transcriptomic responses to oxidative stress were determined in two Clade III transcription factors, Arabidopsis AtCRF5 and tomato SlCRF5. AtCRF5 was required for regulated expression of >240 genes that are involved in oxidative stress response. Similarly, SlCRF5 was involved in the regulated expression of nearly 420 oxidative stress response genes. Similarities in gene regulation by these Clade III members in response to oxidative stress were observed between Arabidopsis and tomato, as indicated by Gene Ontology term enrichment. CK levels were also changed in response to oxidative stress in both species. These changes were regulated by Clade III CRFs. Taken together, these findings suggest that Clade III CRFs play a role in oxidative stress response as well as having roles in CK signaling.


2004 ◽  
Vol 41 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Pascal Rey ◽  
Stéphan Cuiné ◽  
Françoise Eymery ◽  
Jérome Garin ◽  
Magali Court ◽  
...  

2015 ◽  
Vol 72 (8) ◽  
pp. 1500-1507 ◽  
Author(s):  
Fujie Yan ◽  
Hao Hu ◽  
Laifeng Lu ◽  
Xiaodong Zheng

2006 ◽  
Vol 20 (2) ◽  
pp. 279-290 ◽  
Author(s):  
Haibiao Gong ◽  
Shivendra V. Singh ◽  
Sharda P. Singh ◽  
Ying Mu ◽  
Jung Hoon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document