Redesigning a Graphic Weather Display for Pilots

Author(s):  
David O'Hare ◽  
Neil Stenhouse

Before embarking on a flight, pilots need to acquire information about the actual and forecast weather conditions. Concerns have been raised about the traditional coded format used to provide this information. Software developers have recently provided tools for generating both plain-English and graphical versions of these coded weather observations. We show how we successfully applied a number of ergonomic display principles to improve the graphic display of weather information for general aviation pilots.

2021 ◽  
Vol 11 (2) ◽  
pp. 79-87
Author(s):  
Meredith Carroll ◽  
Paige Sanchez ◽  
Donna Wilt

Abstract. The purpose of this study was to examine how pilots respond to conflicting information on the flight deck. In this study, 108 airline, corporate, and general aviation pilots completed an online questionnaire reporting weather, traffic, and navigation information conflicts experienced on the flight deck, including which information sources they trusted and acted on. Results indicated that weather information conflicts are most commonly experienced, and typically between a certified source in the panel and an uncertified electronic flight bag application. Most participants (a) trusted certified systems due to their accuracy, reliability, recency, and knowledge about the source, and (2) acted on the certified system due to trust, being trained and required to use it, and its indicating a more hazardous situation.


Author(s):  
Jacqueline McSorley ◽  
John Kleber ◽  
Cassandra Domingo ◽  
Gianna Castano ◽  
Beth Blickensderfer

Prior to departing on a flight, General Aviation pilots complete a preflight planning process to ensure the safety of their flight. One aspect of the preflight planning process is obtaining a briefing on the weather conditions that the pilot might encounter along their flight route. Traditionally pilots have utilized a phone-in service, run by Flight Services, to aid in their assessment of weather conditions; however, research indicates that pilots are increasingly reliant on conducting self- briefing using online resources. The purpose of this study is to determine pilot perceptions of obtaining a phone-in brief in comparison to self-briefing.


Author(s):  
Joseph T Coyne ◽  
Kara A. Latorella ◽  
Carryl L. Baldwin

VFR flight into IMC conditions accounts for over 10% of general aviation fatalities each year. Recent research suggests that pilots may not properly assess weather conditions. New graphical weather information systems (GWISs) may positively or negatively influence pilot weather-related judgments. Since GWIS information is not always current it may not be veridical. In the current investigation twenty-four GA pilots made visibility and ceiling estimates of simulated weather conditions either with or without a GWIS display. Pilots generally overestimated weather conditions and their judgments were influenced by the GWIS. The results revealed an interaction between ceiling and visibility that suggests a new model for understanding VFR flight into IMC. The current results suggest an important area for future research into understanding pilots' decisions to continue into deteriorating weather conditions. Results are discussed in terms of advancing aviation decision making models for understanding VFR into IMC flight, and the design of GWIS symbology to foster accurate assessments.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Carolina Rodriguez-Paras ◽  
Johnathan T. McKenzie ◽  
Pasakorn Choterungruengkorn ◽  
Thomas K. Ferris

Despite the increasing availability of technologies that provide access to aviation weather information in the cockpit, weather remains a prominent contributor to general aviation (GA) accidents. Pilots fail to detect the presence of new weather information, misinterpret it, or otherwise fail to act appropriately on it. When cognitive demands imposed by concurrent flight tasks are high, the risks increase for each of these failure modes. Previous research shows how introducing vibrotactile cues can help ease or redistribute some of these demands, but there is untapped potential in exploring how vibratory cues can facilitate “interruption management”, i.e., fitting the processing of available weather information into flight task workflow. In the current study, GA pilots flew a mountainous terrain scenario in a flight training device while receiving, processing, and acting on various weather information messages that were displayed visually, in graphical and text formats, on an experimental weather display. Half of the participants additionally received vibrotactile cues via a connected smartwatch with patterns that conveyed the “severity” of the message, allowing pilots to make informed decisions about when to fully attend to and process the message. Results indicate that weather messages were acknowledged more often and faster when accompanied by the vibrotactile cues, but the time after acknowledgment to fully process the messages was not significantly affected by vibrotactile cuing, nor was overall situation awareness. These findings illustrate that severity-encoded vibrotactile cues can support pilot awareness of updated weather as well as task management in processing weather messages while managing concurrent flight demands.


Author(s):  
Mark Wiggins ◽  
David O'Hare

Inappropriate and ineffective weather-related decision making continues to account for a significant proportion of general aviation fatalities in the United States and elsewhere. This study details the evaluation of a computer-based training system that was developed to provide visual pilots with the skills necessary to recognize and respond to the cues associated with deteriorating weather conditions during flight. A total of 66 pilots were assigned to one of two groups, and the evaluation process was undertaken at both a self-report and performance level. At the self-report level, the results suggested that pilots were more likely to use the cues following exposure to the training program. From a performance perspective, there is evidence to suggest that cue-based training can improve the timeliness of weather-related decision making during visual flight rules flight. Actual or potential applications of this research include the development of computer-based training systems for fault diagnosis in complex industrial environments.


2021 ◽  
pp. 1-7
Author(s):  
Beth Blickensderfer ◽  
Jacqueline McSorley ◽  
Nicolas Defillipis ◽  
Jayde M. King ◽  
Yolanda Ortiz ◽  
...  

Author(s):  
Janelle Viera O'Brien ◽  
Christopher D. Wickens

In any Free Flight system, pilots must have displays which effectively depict traffic and weather information as more and more responsibility for separation from such hazards transfers from air traffic controllers to pilots. This research effort seeks to address the issues of dimensionality (3D versus 2D coplanar displays) and data base integration (separation or integration of traffic and weather information within displays). Seventeen general aviation flight instructors flew a series of en route trials with four display types in which dimensionality, data base integration, and hazard geometries were manipulated. Analysis of the data revealed that the 2D displays resulted in a smaller percentage of conflicts with traffic and weather hazards. The results also suggested that displays in which traffic and weather were integrated resulted in fewer hazard conflicts for trials in which both hazard types were critical to maneuver selection. Maneuver strategy was also found to vary by scenario geometry.


Sign in / Sign up

Export Citation Format

Share Document