Development and mechanical characterization of polylactide green composites reinforced with natural fibers

2021 ◽  
Vol 1 (2-3) ◽  
pp. 35-40
Author(s):  
WIKTORIA MAZUR
Author(s):  
Enrique Rocha-Rangel ◽  
J. Ernesto Benavides-Hernández ◽  
José A. Rodríguez-Garcia ◽  
Alejandro Altamirano-Torres ◽  
Y. Gabriela Torres-Hernández ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2841 ◽  
Author(s):  
Mauricio Torres-Arellano ◽  
Victoria Renteria-Rodríguez ◽  
Edgar Franco-Urquiza

This work deals with the manufacture and mechanical characterization of natural-fiber-reinforced biobased epoxy resins. Biolaminates are attractive to various industries because they are low-density, biodegradable, and lightweight materials. Natural fibers such as Ixtle, Henequen, and Jute were used as reinforcing fabrics for two biobased epoxy resins from Sicomin®. The manufacture of the biolaminates was carried out through the vacuum-assisted resin infusion process. The mechanical characterization revealed the Jute biolaminates present the highest stiffness and strength, whereas the Henequen biolaminates show high strain values. The rigid and semirigid biolaminates obtained in this work could drive new applications targeting industries that require lightweight and low-cost sustainable composites.


2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


2013 ◽  
Vol 577-578 ◽  
pp. 81-84 ◽  
Author(s):  
Hitoshi Takagi ◽  
Toshihiro Fujii

This paper deals with the mechanical behavior of bamboo fiber-reinforced biodegradable composites (green composites). A starch-based, dispersion type biodegradable resin was used as matrix polymer, and this matrix was reinforced by long bamboo fibers which were extracted by a steam-explosion method. The experimental results showed that the developed green composites possessed the flexural and tensile strength of 263 MPa and 270 MPa, respectively. The mechanical properties of the green composites were evaluated as a function of fiber content. It is found that the observed tensile strength was slightly lower than that of estimated values from the rule of the mixture. This discrepancy might be related to the misorientation of the bamboo fiber in the composites and to that the final fracture of composites is also governed by the presence of weak bamboo fiber.


2010 ◽  
Vol 1276 ◽  
Author(s):  
Yaret G. Torres-Hernández- ◽  
Alejandro Altamirano-Torres ◽  
Francisco Sandoval-Pérez ◽  
Enrique Rocha Rangel

AbstractIn this work the synthesis and mechanical characterization of a polymer matrix composite is reported. An epoxy resin is used as matrix with addition of starch and coconut fibers as reinforcement. Vickers hardness and impact tests are used for mechanical characterization. Starch is used to promote degradability of the polymer matrix with clear benefits for the environment. Natural fibers have been used for reinforcing the composite materials. Natural fibers have several advantages such as price, low density and relatively high mechanical properties, they are also biodegradable and non abrasive In this investigation, the composite material samples are fabricated with epoxy resin, 5, 10, 15 wt % of starch and 5, 10 wt % of coconut fibers with the help of silicon molds which have the dimensions and geometry according to ASTM Standards for make Impact and Vickers hardness tests. The obtained results show that increases in the amount of coconut fibers cause an enhancement of the mechanical properties of the material, due to a good adhesion between the polymeric matrix and the natural fibers.


2019 ◽  
Vol 35 (4) ◽  
pp. 173-187
Author(s):  
D Hermawan ◽  
Che Mohamad Hazwan ◽  
FAT Owolabi ◽  
Deepu A Gopakumar ◽  
M Hasan ◽  
...  

The forestry and agricultural market have been perceiving outstanding growth due to the advantages of green composites, such as cost effective in nature, environment friendly, excellent mechanical properties, and so on. Various researchers had studied the reinforcement efficiency of various natural fibers in the diverse polymer matrices. Herein, we reported the characterization of microfiber handsheet-molded thermoplastic green composites developed from the combination of oil palm empty fruit bunch (OPEFB)-based microfiber pulp as filler and polyester PP based as matrix. Refined alkaline extracted OPEFB pulp fiber was mixed at different layered composition of the composite of grafted polypropylene. The physical properties and mechanical properties were conducted according to the ASTM standard and showed substantial improvement of the handsheet-molded composite. The scanning electron microgram showed that, as the addition of OPEFB fiber loading increased, there was improved interfacial bonding except for 50% fiber loading which experience fiber pullout. The result also showed improved thermal stability compared with the neat composite. This study will be an effective platform to develop the packaging materials using polymer handsheet composite. [Formula: see text]


2019 ◽  
Vol 801 ◽  
pp. 133-138 ◽  
Author(s):  
Bandu Madhukar Kale ◽  
Samson Rwahwire ◽  
Nilkanth Kisan Kale ◽  
Wilson Babu Musinguzi

In recent years the utilization of natural fibers as reinforcing agents in thermoplastic composites has captured major attention. This research studied the effect of reaction time on the morphology, particle size, and melting point of microcrystalline cellulose and the reinforcement ability via mechanical characterization of the modified MCC in a blend of predominantly PLA matrix. In order to accomplish this latter goal, the acetylated microcrystals were blended with polylactic acid (PLA) polymer at 5 wt% concentration. Furthermore, a new method to control the degree of substitution and particle shape, size and distribution of microcrystalline cellulose by controlling the acetylation time is presented. A series of samples were prepared by the acetylation of microcrystalline cellulose to varying levels of acetate substitution. Composites of the acetate substituted microcrystalline cellulose with polylactic acid (PLA) showed a substantial increase in the modulus of rigidity at an optimum concentration and level of acetate substitution. Spectroscopic, morphological together with thermal and mechanical property data are presented and discussed.


Author(s):  
Carmen SALAZAR-HERNÁNDEZ ◽  
Juan Manuel MENDOZA-MIRANDA ◽  
Alfredo CORTES-LÓPEZ ◽  
Luis Fernando GONZÁLEZ-MÉNDEZ

In this paper, composite materials reinforced with natural fibers were studied, such as: Jute (MC-RY) and Manta (MC-RM) as a proposal for new materials for the manufacture of a prototype for automotive defense. The materials were manufactured as laminates and characterized mechanically through stress, bending, impact and Brinell hardness index tests. The results indicated that both reinforcers improved the mechanical strength of the matrix by up to 71%, as well as the impact energy absorption by 14%. The mechanical properties for MC-RY determined in flexure (bending = 56 MPa, Eflection = 4.16 GPa and maximum = 14 mm) were used to perform an impact simulation in two different models created in SolidWork, the results indicated that the MC-RY could be used for the construction of the defense using 3 layers of this material.


Sign in / Sign up

Export Citation Format

Share Document