Standard Specification for:Spray-Applied Fibrous Thermal Insulation for Elevated Temperature (Discontinued 1999)

10.1520/c0720 ◽  
1999 ◽  
Author(s):  
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Ying-Kuan Tsai

In this paper, a compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature was proposed. The thermal insulation material was made by Portland cement with different portions of perlite. The compressive strengths of four different perlite ratios in weight, such as 0%, 10%, 20%, and 30% of thermal insulation materials, confined by one-layer, two-layer, and three-layer carbon fiber-reinforced polymer (CFRP) composite materials, were obtained. The test results indicated that the specimen’s compressive strength decreased with an increase in the amount of perlite replacement and increased with an increase in the number of CFRP wrapping layers. Based on the test results, a theoretical compressive peak strength model with some parameters was proposed. In the meantime, the compressive strengths of the above four different perlite ratios of thermal insulation materials under elevated temperature, such as ambient temperature, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C, were obtained. For compression tests of specimens with a fixed amount of perlite, the test results indicated that the specimen’s compressive strength decreased with an increase in temperature, highlighting a thermal softening phenomenon. Based on the test results, a compressive peak strength model with a thermal softening parameter was proposed to predict the peak strength under elevated temperature. Finally, a compressive peak strength model for thermal insulation material with CFRP confinement under different elevated temperature was derived, and it achieved acceptable results in comparison to the experimental results.


2016 ◽  
Vol 58 (7-8) ◽  
pp. 669-677 ◽  
Author(s):  
Yuanzhen Liu ◽  
Haifeng Ji ◽  
Jianguang Zhang ◽  
Wenjing Wang ◽  
Y. Frank Chen

2016 ◽  
Vol 40 (5) ◽  
pp. 417-424
Author(s):  
Jordan M. Church ◽  
Michael N. Blades ◽  
David W. Yarbrough

The determination of the thermal performance of hybrid insulation assemblies that include an enclosed reflective airspace and a separate layer of insulation is being done using a hot-box test facility operated in accordance with ASTM C1224, the Standard Specification for Reflective Insulation. The thermal resistance determination of the insulated region requires a hot-box test with known thermal insulation to determine heat flow through the framing. Factors that affect the result for the hybrid insulation assembly will be discussed along with results obtained using the ASTM C1224 protocol. The thermal resistance obtained using the hot-box apparatus will be compared with calculated values obtained from published correlations. The uncertainty in the hybrid insulation assembly and the enclosed reflective airspace due to uncertainty in the thermal resistance of the calibration material are of particular interest.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2019 ◽  
Vol 5 (3) ◽  
pp. 69-78
Author(s):  
V. V. Mozharovsky ◽  
◽  
D. S. Kuzmenkov ◽  
E. A. Golubeva ◽  
◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document