Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete

1989 ◽  
Vol 11 (1) ◽  
pp. 80 ◽  
Author(s):  
PK Mehta ◽  
JG Asselanis ◽  
P-C Aitcin ◽  
PK Mehta
2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Alireza Mohammadi Bayazidi ◽  
Gai-Ge Wang ◽  
Hamed Bolandi ◽  
Amir H. Alavi ◽  
Amir H. Gandomi

This paper presents a new multigene genetic programming (MGGP) approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


1989 ◽  
Vol 16 (5) ◽  
pp. 661-668
Author(s):  
Pierre Laplante ◽  
Pierre-Claude Aïtcin

In the late sixties, several concrete producers in the Chicago area developed very high strength concrete. The compressive strength of this new type of concrete was increased gradually, and it is now possible to buy 100 MPa ready-mixed concrete in several places in North America. Of significant technological importance, very high strength concrete is becoming popular all over North America due to its profitability. As to why and how very high strength concrete is made, the readily available answers to the first question contrast with the predominately empirical approach that has characterized research into producing very high strength concrete up to now. In fact, there are no miracle mixes that will universally guarantee the availability of 100 MPa ready-to-use concretes. Nonetheless, some guidelines have been established that should be followed in order to avoid various pitfalls. In Canada, very high strength concrete is beginning to be used in the Toronto and Montreal areas. This paper summarizes the principal results obtained on two specific projects: the construction of an experimental column in Montreal in 1984, and the construction of Nova Scotia Plaza in Toronto in 1986. Key words: high-strength concrete, water/cement ratio, superplasticizer, silica fume, slag.


2013 ◽  
Vol 477-478 ◽  
pp. 941-944 ◽  
Author(s):  
Jing Jing Feng ◽  
Xiao Qing Wang ◽  
Shan Shan Wang

The properties of the concrete with super-fine steel slag were compared with those of the pure cement concrete. Results show that the concrete with 20% super-fine steel slag has similar compressive strength, elastic modulus, and permeability with the pure cement concrete at the age of 28 and 90 days. The addition of super-fine steel slag tends to decrease the initial slump of concrete, but it has a good ability of prevention of slump loss. The concrete with super-fine steel slag has similar anti-carbonation capacity with the pure cement concrete. The concrete with 30% super-fine steel slag has lower compressive strength, lower elastic modulus, and higher permeability than the pure cement concrete.


2010 ◽  
Vol 163-167 ◽  
pp. 1667-1672
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Yan Dong Li ◽  
Xiao Ning Zheng

: Performance of high strength concrete and ordinary concrete under alternating action of mixed erosion and freeze-thaw cycling were compared. The erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. Results showed that, after 200 freeze-thaw cycles, the effect of surface scaling of ordinary concrete was more significant than that of high strength concrete, and the mass loss rate of ordinary concrete was much higher; The relative dynamic modulus of elasticity of high strength concrete slightly increased by 2.99%, while that of ordinary concrete decreased more than 13%. Compressive strength and elastic modulus of high strength and ordinary concrete behaved almost in the same way in the first 50 freeze-thaw cycles, with the increase of freeze-thaw cycles in the following test, the compressive strength and elastic modulus of ordinary concrete showed larger reductions than these of high strength concrete. As the freeze-thaw cycles increased, the corresponding strain to the peak stress of high strength concrete decreased, but it increased for ordinary concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Afaf M. O. Wedatalla ◽  
Yanmin Jia ◽  
Abubaker A. M. Ahmed

This study was conducted to investigate the impact of hot and dry environments under different curing conditions on the properties of high-strength concrete. The concrete samples were prepared at a room temperature of 20°C and cured under different curing conditions. Some specimens underwent standard curing from 24 h after casting until the day of testing. Some specimens underwent steam curing in a dry oven at 30°C and 50°C after casting until the day of testing. Other specimens were cured for 3, 7, 21, and 28 days in water and then placed in a dry oven at 30°C and 50°C and tested at the age of 28 days, except for the specimens that were cured for 28 days, which were tested at the age of 31 days, to study the effect of curing period on the strength of concrete exposed to dry and hot environments after moist curing. The effects of hot and dry environments on high-strength concrete with different water/binder ratios (0.30, 0.35, and 0.40), using (30%) fly ash for all mixes, and (0%, 5%, and 10%) silica fume with the binder (450, 480, and 520 kg), respectively, were separately investigated, and the effects of curing under different conditions were evaluated by measuring the compressive strength, flexural strength, microhardness, and chloride diffusion and by assessing the concretes’ microstructure. The relationships between these properties were presented. A good agreement was noted between the concrete compressive strength and concrete properties at different temperatures, curing periods, and curing methods.


Sign in / Sign up

Export Citation Format

Share Document