scholarly journals The Effect of Curing Conditions (In Situ vs. Laboratory) on Compressive Strength Development of High Strength Concrete

2013 ◽  
Vol 65 ◽  
pp. 113-119 ◽  
Author(s):  
Peter Paulík
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Keun-Hyeok Yang ◽  
Jae-Sung Mun ◽  
Myung-Sug Cho

This study examined the relative strength-maturity relationship of high-strength concrete (HSC) specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1) isothermal curing conditions of 5°C, 20°C, and 40°C and (2) terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.


2014 ◽  
Vol 905 ◽  
pp. 195-198 ◽  
Author(s):  
Keun Hyeok Yang ◽  
Jae Sung Mun ◽  
Jae Eun Jeong

The present study examined the in-place strength of high-strength concrete based on the relative strength-maturity relationship. The measured strength gain of high-strength concrete was compared with the predictions obtained from the modified maturity function to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. This study demonstrates that the compressive strength gain of concrete cured at the reference temperature (20°C) for an early age of 3 days is little affected by the subsequent curing temperature histories.


2019 ◽  
Vol 972 ◽  
pp. 84-90
Author(s):  
Makhmud Kharun ◽  
Dmitry D. Koroteev

Self-compacting high-strength concrete (SCHSC) is an innovative concrete that has superior physical and mechanical properties, and does not require vibration for placing and compaction. Heat treatment (HT) of SCHSC can significantly accelerate the strength growth during cast-in-situ construction, and allows to reduce the turnover of formwork, the labor costs for construction, and the construction period. The issue of strength development of SCHSC during HT has been studied. SCHSC of R28 = 100 MPa was studied. Test specimens were cured with HT by infrared rays for 7, 9, 11, 13, 16 and 24 hours. Then warmed specimens were tested for compressive strength after 0.5, 4, 12 and 24 hours of cooling period. Study was carried out on the basis of analyzing, generalizing and evaluations of experimental data. A mathematical model is proposed for determining the compressive strength of SCHSC after one day of curing with HT.


10.14311/228 ◽  
2001 ◽  
Vol 41 (3) ◽  
Author(s):  
M. Safan ◽  
A. Kohoutková

The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.


2015 ◽  
Vol 802 ◽  
pp. 214-219 ◽  
Author(s):  
Aktham Hatem Alani ◽  
Megat Azmi Megat Johari

The influence of silica fume (SF) inclusion on the compressive strength development of high strength concrete (HSC) containing high volume of palm oil fuel ash (POFA) has been investigated. A HSC containing 100% ordinary Portland cement (OPC) and another HSC mix with 50% POFA as part of the binder were prepared. Due to the reduction in early strength of the HSC with the inclusion of high volume of POFA in the binary blended binder HSC, attempt was made to partially replace the OPC with SF at 5, 10, 15 and 20%, thus creating a ternary blended binder HSC. The results show that the compressive strength development of the HSC containing high volume of POFA was significantly improved with the inclusion of SF. The ternary blended binder HSC with 15% SF exhibited the highest increase in early age strength, even though it did not surpass the OPC-HSC, and it provided the highest strength at 7 and 28 days in comparison to other HSC mixes. Thus, ternary blended binder containing more than 60% supplementary cementitious material (POFA and SF) could be utilized to produce HSC.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Afaf M. O. Wedatalla ◽  
Yanmin Jia ◽  
Abubaker A. M. Ahmed

This study was conducted to investigate the impact of hot and dry environments under different curing conditions on the properties of high-strength concrete. The concrete samples were prepared at a room temperature of 20°C and cured under different curing conditions. Some specimens underwent standard curing from 24 h after casting until the day of testing. Some specimens underwent steam curing in a dry oven at 30°C and 50°C after casting until the day of testing. Other specimens were cured for 3, 7, 21, and 28 days in water and then placed in a dry oven at 30°C and 50°C and tested at the age of 28 days, except for the specimens that were cured for 28 days, which were tested at the age of 31 days, to study the effect of curing period on the strength of concrete exposed to dry and hot environments after moist curing. The effects of hot and dry environments on high-strength concrete with different water/binder ratios (0.30, 0.35, and 0.40), using (30%) fly ash for all mixes, and (0%, 5%, and 10%) silica fume with the binder (450, 480, and 520 kg), respectively, were separately investigated, and the effects of curing under different conditions were evaluated by measuring the compressive strength, flexural strength, microhardness, and chloride diffusion and by assessing the concretes’ microstructure. The relationships between these properties were presented. A good agreement was noted between the concrete compressive strength and concrete properties at different temperatures, curing periods, and curing methods.


Sign in / Sign up

Export Citation Format

Share Document