Evaluation of Woven Geotextile Pore Structure Parameters Using Image Analysis

2004 ◽  
Vol 27 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Ahmet H. Aydilek ◽  
Tuncer B. Edil
2004 ◽  
Vol 27 (1) ◽  
pp. 11070
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
AH Aydilek ◽  
TB Edil

Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3724 ◽  
Author(s):  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Marco Actis Grande ◽  
Tibor Kvačkaj

In powder metallurgy (PM), severe plastic deformation (SPD) is a well-known technological solution to achieve interesting properties. However, the occurrence of pores in the final product may limit these properties. Also, for a given type of microstructure, the stereometric parameters of the pore structures, such as shape (represented by Aspect and Dcircle) and distribution (fshape, and fcircle), decisively affect the final properties. The influence of different processing routes (pressing, sintering and equal channel angular pressing (ECAP)) on pore structures in an aluminum PM alloy is discussed. The nature of porosity, porosity evolution and its behavior is explored. The correlation between pore size and morphology is also considered. The final pore structure parameters (Aspect, Dcircle, fshape, and fcircle) of studied aluminum alloys produced by different processing routes depends on the different formation routes.


2019 ◽  
Vol 278 ◽  
pp. 01007
Author(s):  
Chao Yang ◽  
Shuguang Wang ◽  
Feng Xu ◽  
Weiwei Li ◽  
Dongsheng Du

Blast furnace slag blended concrete is widely used in infrastructure, and its chloride resistance is of great concern. This paper experimentally investigated the capillary pore structure and chloride resistance of blast furnace slag blended concrete. Blast furnace slag was proved to be able to optimize the critical pore radius and decrease the proportion of detrimental capillary pores (with radius between 50 nm and 10,000 nm). Meanwhile, the benefit of BFS in improving the chloride resistance was proved. Finally, regression analysis showed that the rapid migration coefficient is proportional to the critical pore radius and the detrimental capillary pore proportion. Nevertheless, the rapid migration coefficient is not closely related to the capillary porosity.


Sign in / Sign up

Export Citation Format

Share Document