Seismic Centrifuge Modeling of a Gentle Slope of Layered Clay, Including a Weak Layer

2021 ◽  
Vol 45 (1) ◽  
pp. 20200236
Author(s):  
Cristian Yair Soriano Camelo ◽  
Maria Cascão Ferreira de Almeida ◽  
S. P. Gopal Madabhushi ◽  
Sam A. Stanier ◽  
Marcio de Souza Soares de Almeida ◽  
...  
2000 ◽  
Vol 628 ◽  
Author(s):  
T.N. Blanton ◽  
D. Majumdar ◽  
S.M. Melpolder

ABSTRACTClay-polymer nanoparticulate composite materials are evaluated by the X-ray diffraction technique. The basal plane spacing provided information about the degree of intercalation and exfoliation of the 2: 1 layered clay structure. Both intercalation and exfoliation are controlled by the identity of the polymer and the clay:polymer ratio.


2013 ◽  
Vol 479-480 ◽  
pp. 1139-1143
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Wen Ya Chung ◽  
Chen Hui Tsai ◽  
Ting Chen ◽  
...  

Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.


2017 ◽  
Vol 11 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Johan Gaume ◽  
Alec van Herwijnen ◽  
Guillaume Chambon ◽  
Nander Wever ◽  
Jürg Schweizer

Abstract. The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient, condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate across a slope. In contrast to pioneering shear-based approaches, recent developments account for weak layer collapse and allow for better explaining typical observations of remote triggering from low-angle terrain. However, these new models predict a critical length for crack propagation that is almost independent of slope angle, a rather surprising and counterintuitive result. Based on discrete element simulations we propose a new analytical expression for the critical crack length. This new model reconciles past approaches by considering for the first time the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The crack begins to propagate when the stress induced by slab loading and deformation at the crack tip exceeds the limit given by the failure envelope of the weak layer. The model can reproduce crack propagation on low-angle terrain and the decrease in critical length with increasing slope angle as modeled in numerical experiments. The good agreement of our new model with extensive field data and the ease of implementation in the snow cover model SNOWPACK opens a promising prospect for improving avalanche forecasting.


2019 ◽  
Vol 260 ◽  
pp. 105213 ◽  
Author(s):  
Yan-Guo Zhou ◽  
Di Meng ◽  
Qiang Ma ◽  
Bo Huang ◽  
Dao-Sheng Ling ◽  
...  

2011 ◽  
Vol 217-218 ◽  
pp. 181-186
Author(s):  
Shao Peng Wu ◽  
Jun Han ◽  
Xing Liu

Bitumen is widely used in road construction. Due to heavy traffic loads and environmental factors, bitumen properties will change during service life. Bitumen will age due to diffusion of oxygen and UV radiation. Repeated loading will result in decreasing strength because of fatigue. In this paper, one layer clay powder was used to modify base bitumen with different mass contents. Then the influences of ultraviolet radiation (UV) aging on the dynamic fatigue properties of the layered clay powder were evaluated by Dynamic Shear Rheomoter (DSR) and Universal Testing Machine (UTM). The ageing evaluation shows that the ageing resistance of bitumen is improved and this improvement is more notable in bitumen fatigue than mixture.


2014 ◽  
Vol 28 (2) ◽  
pp. 163-180
Author(s):  
Qiang Luo ◽  
Mao-tian Luan ◽  
Yun-ming Yang ◽  
Zhong-tao Wang ◽  
Shou-zheng Zhao

Sign in / Sign up

Export Citation Format

Share Document