Evaluation of Effective Thermal Conductivity for Mineral Cast Structural Materials Using Steady-State and Transient Methods

2013 ◽  
Vol 41 (4) ◽  
pp. 20120216 ◽  
Author(s):  
A. Selvakumar ◽  
P. V. Mohanram
1995 ◽  
Vol 117 (1) ◽  
pp. 75-81 ◽  
Author(s):  
A. K. Mallik ◽  
G. P. Peterson

An experimental investigation of vapor deposited micro heat pipe arrays was conducted using arrays of 34 and 66 micro heat pipes occupying 0.75 and 1.45 percent of the cross-sectional area, respectively. The performance of wafers containing the arrays was compared with that of a plain silicon wafer. All of the wafers had 8 × 8 mm thermofoil heaters located on the bottom surface to simulate the active devices in an actual application. The temperature distributions across the wafers were obtained using a Hughes Probeye TVS Infrared Thermal Imaging System and a standard VHS video recorder. For wafers containing arrays of 34 vapor deposited micro heat pipes, the steady-state experimental data indicated a reduction in the maximum surface temperature and temperature gradients of 24.4 and 27.4 percent, respectively, coupled with an improvement in the effective thermal conductivity of 41.7 percent. For wafers containing arrays of 66 vapor deposited micro heat pipes, the corresponding reductions in the surface temperature and temperature gradients were 29.0 and 41.7 percent, respectively, and the effective thermal conductivity increased 47.1 percent, for input heat fluxes of 4.70 W/cm2. The experimental results were compared with the results of a previously developed numerical model, which was shown to predict the temperature distribution with a high degree of accuracy, for wafers both with and without the heat pipe arrays.


2016 ◽  
Vol 41 (2) ◽  
pp. 101-119 ◽  
Author(s):  
Robin E Clarke ◽  
Andrea Pianella ◽  
Bahman Shabani ◽  
Gary Rosengarten

A technique based on the heat flow meter method is proposed for measuring the thermal conductivity of moist earthen and granular loose-fill materials. Although transient methods have become popular, this steady-state approach offers an uncertainty that can be reliably estimated and a test method that is widely accepted for building certification purposes. Variations to the standard method are proposed, including the use of a rigid holding frame with stiff base and silicone sponge buffer sheets, in conjunction with difference measurement to factor out the contributions from base, buffers and contact resistance. Using this approach, results are presented for green-roof substrates based on scoria, terracotta and furnace-ash at different moisture contents. Thermal conductivity ranged from 0.13 to 0.80 W/m K and fitted well to linear regression plots against moisture content. Further comparative measurements of a single specimen showed that direct measurement was less consistent than difference measurement and thus indicated that thermal resistance was higher by 0.023 m2 K/W, attributable to the presence of contact resistance.


2000 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

Abstract A two-dimensional numerical model was established to study the behavior of a cylindrical capillary pumped loop evaporator under steady-state operations. The influence of heat load, liquid subcooling and effective thermal conductivity of the wick structure on the evaporator performance were studied. It was found that increasing the applied heat flux and degree of liquid subcooling resulted in a decrease the temperature in the liquid core. This helped to prevent the vapor from generating in the liquid core and decreased the length of the two phase region in the wick structure. Decreasing the effective thermal conductivity also decreases the temperature in the liquid core as related to the back wick condition. It was observed that for a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator non-operational. It was also observed that for a given heat flux, a minimum required liquid subcooling exists. Vapor may form in the liquid core when the liquid subcooling is less than the minimum value.


2021 ◽  
Vol 172 ◽  
pp. 112854
Author(s):  
Maulik Panchal ◽  
Vrushabh Lambade ◽  
Vimal Kanpariya ◽  
Harsh Patel ◽  
Paritosh Chaudhuri

2003 ◽  
Vol 125 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

A cylindrical capillary pumped loop evaporator operating under steady-state conditions was studied using a two-dimensional numerical model. Parameters affecting the phase conditions in the wick structure and thermal-fluid behavior in the evaporator liquid core were studied. The influences of heat load, liquid subcooling, and effective thermal conductivity of the wick structure were specifically selected to evaluate evaporator performance. Either increasing the applied heat flux and/or degree of inlet liquid subcooling resulted in decreased liquid core temperature, which is favorable for proper evaporator operation. This helps prevent conditions that may allow vapor formation in the liquid core as well as result in decreased length of the two-phase region in the wick structure. Decreasing the effective thermal conductivity of the wick also decreases the temperature in the liquid core. For a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator nonoperational. Additionally, for a given heat flux, a minimum required liquid subcooling exists as conditions are such that vapor potentially may form in the liquid core when the liquid subcooling is less than a minimum value.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Daniel Moser ◽  
Sreekanth Pannala ◽  
Jayathi Murthy

In this work, a discrete element model (DEM) is developed and implemented in the open source flow solver MFiX to simulate the effective thermal conductivity of powder beds for selective laser sintering (SLS) applications, considering scenarios common in SLS such as thin beds, high temperatures, and degrees of powder consolidation. Random particle packing structures of spherical particles are generated and heat transfer between the particles is calculated. A particle–particle contact conduction model, a particle–fluid–particle conduction model, and a view factor radiation model using ray-tracing for calculation of view factors and assuming optically thick particles are used. A nonlinear solver is used to solve for the particle temperatures that drive the net heat transfer to zero for a steady state solution. The effective thermal conductivity is then calculated from the steady state temperature distribution. Results are compared against previously published experimental measurements for powder beds and good agreement is obtained. Results are developed for the impacts of very high temperatures, finite bed depth, consolidation, Young's modulus, emissivity, gas conductivity, and polydispersity on effective thermal conductivity. Emphasis is placed on uncertainty quantification in the predicted thermal conductivity resulting from uncertain inputs. This allows SLS practitioners to control the inputs to which the thermal response of the process is most sensitive.


Sign in / Sign up

Export Citation Format

Share Document