Suitable Steady-State Methods for Measurement of Effective Thermal Conductivity in Rigid Insulations

Author(s):  
WT Engelke
1995 ◽  
Vol 117 (1) ◽  
pp. 75-81 ◽  
Author(s):  
A. K. Mallik ◽  
G. P. Peterson

An experimental investigation of vapor deposited micro heat pipe arrays was conducted using arrays of 34 and 66 micro heat pipes occupying 0.75 and 1.45 percent of the cross-sectional area, respectively. The performance of wafers containing the arrays was compared with that of a plain silicon wafer. All of the wafers had 8 × 8 mm thermofoil heaters located on the bottom surface to simulate the active devices in an actual application. The temperature distributions across the wafers were obtained using a Hughes Probeye TVS Infrared Thermal Imaging System and a standard VHS video recorder. For wafers containing arrays of 34 vapor deposited micro heat pipes, the steady-state experimental data indicated a reduction in the maximum surface temperature and temperature gradients of 24.4 and 27.4 percent, respectively, coupled with an improvement in the effective thermal conductivity of 41.7 percent. For wafers containing arrays of 66 vapor deposited micro heat pipes, the corresponding reductions in the surface temperature and temperature gradients were 29.0 and 41.7 percent, respectively, and the effective thermal conductivity increased 47.1 percent, for input heat fluxes of 4.70 W/cm2. The experimental results were compared with the results of a previously developed numerical model, which was shown to predict the temperature distribution with a high degree of accuracy, for wafers both with and without the heat pipe arrays.


2000 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

Abstract A two-dimensional numerical model was established to study the behavior of a cylindrical capillary pumped loop evaporator under steady-state operations. The influence of heat load, liquid subcooling and effective thermal conductivity of the wick structure on the evaporator performance were studied. It was found that increasing the applied heat flux and degree of liquid subcooling resulted in a decrease the temperature in the liquid core. This helped to prevent the vapor from generating in the liquid core and decreased the length of the two phase region in the wick structure. Decreasing the effective thermal conductivity also decreases the temperature in the liquid core as related to the back wick condition. It was observed that for a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator non-operational. It was also observed that for a given heat flux, a minimum required liquid subcooling exists. Vapor may form in the liquid core when the liquid subcooling is less than the minimum value.


2021 ◽  
Vol 172 ◽  
pp. 112854
Author(s):  
Maulik Panchal ◽  
Vrushabh Lambade ◽  
Vimal Kanpariya ◽  
Harsh Patel ◽  
Paritosh Chaudhuri

2003 ◽  
Vol 125 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Y. H. Yan ◽  
J. M. Ochterbeck

A cylindrical capillary pumped loop evaporator operating under steady-state conditions was studied using a two-dimensional numerical model. Parameters affecting the phase conditions in the wick structure and thermal-fluid behavior in the evaporator liquid core were studied. The influences of heat load, liquid subcooling, and effective thermal conductivity of the wick structure were specifically selected to evaluate evaporator performance. Either increasing the applied heat flux and/or degree of inlet liquid subcooling resulted in decreased liquid core temperature, which is favorable for proper evaporator operation. This helps prevent conditions that may allow vapor formation in the liquid core as well as result in decreased length of the two-phase region in the wick structure. Decreasing the effective thermal conductivity of the wick also decreases the temperature in the liquid core. For a given liquid subcooling, a minimum heat flux exists below which vapor will generate in the liquid core and render the evaporator nonoperational. Additionally, for a given heat flux, a minimum required liquid subcooling exists as conditions are such that vapor potentially may form in the liquid core when the liquid subcooling is less than a minimum value.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Daniel Moser ◽  
Sreekanth Pannala ◽  
Jayathi Murthy

In this work, a discrete element model (DEM) is developed and implemented in the open source flow solver MFiX to simulate the effective thermal conductivity of powder beds for selective laser sintering (SLS) applications, considering scenarios common in SLS such as thin beds, high temperatures, and degrees of powder consolidation. Random particle packing structures of spherical particles are generated and heat transfer between the particles is calculated. A particle–particle contact conduction model, a particle–fluid–particle conduction model, and a view factor radiation model using ray-tracing for calculation of view factors and assuming optically thick particles are used. A nonlinear solver is used to solve for the particle temperatures that drive the net heat transfer to zero for a steady state solution. The effective thermal conductivity is then calculated from the steady state temperature distribution. Results are compared against previously published experimental measurements for powder beds and good agreement is obtained. Results are developed for the impacts of very high temperatures, finite bed depth, consolidation, Young's modulus, emissivity, gas conductivity, and polydispersity on effective thermal conductivity. Emphasis is placed on uncertainty quantification in the predicted thermal conductivity resulting from uncertain inputs. This allows SLS practitioners to control the inputs to which the thermal response of the process is most sensitive.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Calvin H. Li ◽  
Wesley Williams ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu ◽  
G. P. Peterson

Nanofluids are being studied for their potential to enhance heat transfer, which could have a significant impact on energy generation and storage systems. However, only limited experimental data on metal and metal-oxide based nanofluids, showing enhancement of the thermal conductivity, are currently available. Moreover, the majority of the data currently available have been obtained using transient methods. Some controversy exists as to the validity of the measured enhancement and the possibility that this enhancement may be an artifact of the experimental methodology. In the current investigation, Al2O3∕water nanofluids with normal diameters of 47nm at different volume fractions (0.5%, 2%, 4%, and 6%) have been investigated, using two different methodologies: a transient hot-wire method and a steady-state cut-bar method. The comparison of the measured data obtained using these two different experimental systems at room temperature was conducted and the experimental data at higher temperatures were obtained with steady-state cut-bar method and compared with previously reported data obtained using a transient hot-wire method. The arguments that the methodology is the cause of the observed enhancement of nanofluids effective thermal conductivity are evaluated and resolved. It is clear from the results that at room temperature, both the steady-state cut-bar and transient hot-wire methods result in nearly identical values for the effective thermal conductivity of the nanofluids tested, while at higher temperatures, the onset of natural convection results in larger measured effective thermal conductivities for the hot-wire method than those obtained using the steady-state cut-bar method. The experimental data at room temperature were also compared with previously reported data at room temperature and current available theoretical models, and the deviations of experimental data from the predicted values are presented and discussed.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Masoumeh Sadat Latifi ◽  
Saeed Setayeshi ◽  
Giuseppe Starace ◽  
Maria Fiorentino

The thermal–hydraulic phenomena in a pebble bed modular reactor (PBMR) core have been simulated under steady-state and transient conditions. The PBMR core is basically a long right circular cylinder with a fuel effective height of 11 m and a diameter of 3.7 m. It contains approximately 452,000 fuel pebbles. A three-dimensional computational fluid dynamic (CFD) model of the PBMR core has been developed to study the influence of porosity on the core performance after reactor shutdown. The developed model was carried out on a personal computer using ANSYS fluent 14.5. Several important heat transfer and fluid flow parameters have been examined under steady-state and transient conditions, including the coolant temperature, effective thermal conductivity of the pebble bed, and the decay heat. Porosity was found to have a significant influence on the coolant temperature, on the effective thermal conductivity of the pebble bed, on the decay heat, and on the required time for heat removal.


Sign in / Sign up

Export Citation Format

Share Document