Laboratory Evaluation of Aging on Engineering Properties of Fine-Graded Porous-Asphalt Concrete

2018 ◽  
Vol 46 (1) ◽  
pp. 20160276 ◽  
Author(s):  
M.-C. Liao ◽  
Y.-Y. Lin ◽  
M.-Y. Tseng
Author(s):  
Jian-Shiuh Chen ◽  
Yang-Chou Sun ◽  
Min-Chih Liao ◽  
Chien-Chung Huang

Porous asphalt concrete (PAC) has an open-graded aggregate mixture to yield high air voids; PAC is mainly applied to the surface drainage layer on high-speed trafficked highway pavements. The objective of the study was to investigate the effect of binder types on the engineering properties and field performance of PAC mixtures. Three binder types were selected for a 19-mm nominal maximum aggregate size gradation: conventional asphalt AR-80, polymer-modified asphalt, and high-viscosity asphalt. A series of laboratory tests were conducted to evaluate the engineering properties of the PAC mixture, including permeability, resistance to draindown, resistance to disintegration, resistance to rutting, and resistance to indirect traction. A 3-km in-service test road was constructed to monitor the performance of PAC pavements using these three binders. Polymer-modified binder was shown to minimize abrasion loss and enhance the durability of the PAC mixture. Test results indicated that the use of polymer-modified binder, instead of unmodified binder, reduced rutting and raveling. When the mixture contained high-viscosity binder, it showed the best performance in the field. Field measurements indicated improved drainage as a result of replacement of the conventional asphalt AR-80 binder with the polymer-modified and high-viscosity binders. PAC pavement surfaces provided good frictional characteristics once the asphalt binder film was worn from the aggregate.


2000 ◽  
Vol 5 ◽  
pp. 96-102
Author(s):  
Satoshi KURODA ◽  
Yoshiteru KATO ◽  
Yasuo GUNJI

2010 ◽  
Vol 24 (7) ◽  
pp. 1207-1213 ◽  
Author(s):  
Quantao Liu ◽  
Erik Schlangen ◽  
Álvaro García ◽  
Martin van de Ven

2020 ◽  
Vol 861 ◽  
pp. 414-420
Author(s):  
Ming Xi Liu ◽  
Jian Guang Xie ◽  
Zhan Qi Wang ◽  
Yan Ping Liu

The sound absorption performance of porous asphalt concrete (PAC) is inseparable from the sizes of voids, as different sizes of voids have different absorption effects on noise in different frequency bands. However, the relationship between the two is not clear. In this study, the equivalent diameter of voids was obtained by the proposed image segmentation algorithm based on the square area, then grey entropy method was used to analyze the effect of different equivalent diameter of voids on the sound absorption performance of PAC in the frequency range of traffic noise. The results show that with the increase of air voids, the peak and average sound absorption coefficient of PAC increase, the sound absorption performance of PAC is improved; and the sound absorption performance of PAC is mainly affected by the equivalent diameter of voids of 3-4mm.


Sign in / Sign up

Export Citation Format

Share Document