Magnetic Field Strength and Temperature Effects on the Behavior of Oil Well Cement Slurry Modified with Iron Oxide Nanoparticles and Quantified with Vipulanandan Models

2019 ◽  
Vol 48 (6) ◽  
pp. 20180107 ◽  
Author(s):  
C. Vipulanandan ◽  
A. Mohammed
2014 ◽  
Vol 692 ◽  
pp. 433-438 ◽  
Author(s):  
Jing Fu Zhang ◽  
Jin Long Yang ◽  
Kai Liu ◽  
Bo Wang ◽  
Rui Xue Hou

Carbon dioxide CO2could corrode the oil well cement paste matrix under agreeable moisture and pressure condition in deep oil wells, which could decrease the compressive strength and damage the annular seal reliability of cement paste matrix. The problem of oil well cement paste matrix corrosion by CO2was researched in the paper for obtain the feasible corrosion prevention technical measures. The microstructure and compressive strength of corroded cement paste matrix were examined by scanning electron microscopeSEMand strength test instrument etc. under different corrosion conditions. The mechanism and effect law of corrosion on oil well cement paste matrix by CO2were analyzed. And the suitable method to protect CO2corrosion in deep oil wells was explored. The results show that the corrosion mechanism of cement paste matrix by CO2was that the wetting phase CO2could generate chemical reaction with original hydration products produced from cement hydration, which CaCO3were developed and the original composition and microstructure of cement paste matrix were destroyed. The compressive strength of corrosion cement paste matrix always was lower than that of un-corrosion cement paste matrix. The compressive strength of corrosion cement paste matrix decreased with increase of curing temperature and differential pressure. The corroded degree of cement paste matrix was intimately related with the compositions of cement slurry. Developing and design anti-corrosive cement slurry should base on effectively improving the compact degree and original strength of cement paste matrix. The compounding additive R designed in the paper could effectively improve the anti-corrosive ability of cement slurry.


Author(s):  
Mtaki Thomas Maagi ◽  
Samwel Daud Lupyana ◽  
Jun Gu

AbstractIn this article, incorporation of nano-SiO2 (NS), nano-TiO2 (NT) and nano-Al2O3 (NA) particles and their binary and ternary blends on water filtration in oil-well cement slurry was examined. The nanoparticle contents were chosen at proportions corresponding to 1, 2, 3 and 4% based on the weight of cement. The experimental specimens were tested at three various temperatures of 70, 80 and 90 °C using a gas pressure of 1000 psi. The quantity of water filtrate collected was measured in milliliter (mL) at 30 min after the test begins. The results consistently indicate that an additional of NS, NT and NA particles independently, reduced the loss of liquid in cement, and its performance varies with temperature and the nanoparticle dosages. The 3% NS usage delivered strong evidence in lessening fluid loss compared to the other results by reducing the loss up to 72%. When collective impact of nanomaterials was determined, the fluid retainment was also improved. The replacement of 4% NST reduced fluid loss by the most compared to NSA and NTA binary groups. In-case of ternary combination, NSTA showed a highest reduction of the water loss by 58–60% likened to the plain samples at the concentration of 4%. The key investigation of this paper clearly suggested that the efficacy of Class G cement having nanoparticles to trap its water is dependent on the nanoparticle contents. The lessening of water filtration might be explicated by the filling capability of nano-scale particles. Nanoparticles can plug the openings within the oil-well cement slurry matrix, thus promoting the retainability of water. Besides, nanoparticles quickens the hydration products by creating dense interlocking C–S–H gels for bridging cement grains and forming enclosed structure which can stop the liquid from escaping the slurry.


2014 ◽  
Vol 34 (5) ◽  
pp. 405-413
Author(s):  
Xianru He ◽  
Qian Chen ◽  
Chunhui Feng ◽  
Liang Wang ◽  
Hailong Hou

Abstract High performance cement slurry polymer modifiers are increasingly in demand in the cementing process of oil and gas. A new polymer modifier with outstanding fluid loss control and high strength and toughness was synthesized by the main monomers butyl acrylate (BA), methyl methacrylate (MMA), acrylamide (AM), the functional monomers vinyltriethoxysilane (VTS), glycidyl methacrylate (GMA) and the initiator of ammonium persulfate (APS) through emulsion polymerization. By using Fourier transform infrared (FTIR) spectrometer, a laser particle analyzer, a scanning electron microscope and a differential scanning calorimeter, we studied the mechanism of fluid loss control and microstructure of polymer latex cement slurries. The experimental results showed that the copolymer could be crosslinked at 160°C and have the lowest fluid loss control, 12 ml, when the polymer content reached 5%. Acrylate latex modified by the silane coupling agent VTS had excellent performance on fluid loss control, as well as mechanical properties for oil well cement. These results have a potential significant value for the development of a new polymer cement modifier with high thermal stability and durability.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yihang Zhang ◽  
Miao He ◽  
Mingbiao Xu ◽  
Peng Xu

In this paper, sepiolite was treated by acid activation, coupling agent treatment, and sulfonation modification. The purpose of this study was to explore the changes in the fluidity and mechanical properties of sepiolite cement slurry before and after modification. Therefore, the comprehensive properties of unmodified sepiolite fiber (HPS) and acid activation-coupling agent treatment-sulfonated sepiolite fiber (S-O-H-HPS) in oil-well cement slurry were evaluated. FT-IR and microscopic mechanism of cement paste fracture surface before and after sepiolite modification were analyzed. The results showed that HPS can effectively improve the toughness of cement paste, but when the content of HPS was more than 1%, the fluidity of cement paste deteriorated sharply and the compressive strength decreased gradually. The addition of S-O-H-HPS can significantly improve the fluidity and stability of HPS slurry. Without affecting the compressive strength, it can effectively improve the flexural strength and impact strength and reduce the elastic modulus of cement paste. The mechanism analysis showed that S-O-H-HPS can not only form network structure in cement paste but also improve the toughness of cement paste by forming a bridge. This also explains why the strength of S-O-H-HPS cement paste does not decrease significantly with the increase of S-O-H-HPS.


2020 ◽  
Vol 993 ◽  
pp. 1351-1355
Author(s):  
Wei Yuan Xiao ◽  
Ming Li ◽  
Dong Bo Xie

In order to study the effect of brine environment on the performance of oil well cement fluid loss additive (FLA) sodium p-styrene sulfonate/N-methylol acrylamide/itaconic acid (SSS/HAM/IA), the water loss of three different cement slurry systems added with different FLA additions (fresh water cement slurry, semi-saturated brine cement slurry and saturated brine cement slurry) were tested at 90°C and 150°C. The results show that SSS/HAM/IA has good salt tolerance. The water loss of three cement slurry systems was controlled within 100mL with FLA addition adjusted in the range of 1%~3% below 150 °C. The salt tolerance mechanism of SSS/HAM/IA was analyzed based on the microstructure of the three system terpolymer solutions characterized under environmental scanning electron microscopy (ESEM).


2020 ◽  
Vol 993 ◽  
pp. 1341-1350
Author(s):  
Xiu Jian Xia ◽  
Yong Jin Yu ◽  
Jian Zhou Jin ◽  
Shuo Qiong Liu ◽  
Ming Xu ◽  
...  

The conventional oil-well cement dispersant has the characteristics of poor dispersion at high temperature, poor compatibility with other additives, and environmental pollution during the production process. In this article, with ultra-early strong polyether monomer, acrylic acid, 2-acrylamine-2-methylpropyl sulfonic acid, sodium methacrylate as copolymer monomers, an environmentally friendly polycarboxylic acid dispersant, DRPC-1L, was prepared by the aqueous solution free-radical polymerization. The chemical composition and thermal stability of the synthetic copolymer were characterized by FTIR and TGA techniques. The evaluation results show that DRPC-1L has a wide temperature range (30~210 °C), good salt-resistance and dispersing effect. It can significantly improve the rheological performance of cement slurry, and it is well matched with oil-well cement additives such as fluid loss agent, retarder and so on. Moreover, it is beneficial to the mechanical strength development of set cement, especially the early compressive strength. It can also inhibit the abnormal gelation phenomenon of cement slurry, flash set, that occurs during high temperature thickening experiments, which plays an important role in enhancing the comprehensive performance of cement slurry. Consequently, the novel polycarboxylic acid dispersant has good application prospects in deep and ultra-deep wells cementing.


Sign in / Sign up

Export Citation Format

Share Document