Crack Initiation Life Behavior Under Biaxial Loading Conditions: Experimental Behavior and Prediction

Author(s):  
H Nowack ◽  
D Hanschmann ◽  
W Ott ◽  
K-H Trautmann ◽  
E Maldfeld
2006 ◽  
Vol 306-308 ◽  
pp. 139-144
Author(s):  
Hyun Woo Lee ◽  
Se-Jong Oh

Crack growth behavior of S45C notched tubular specimen was studied to predict fatigue crack initiation and crack propagation under biaxial loading conditions. Stress-strain field near the hole was analyzed by ANSYS. The crack initiation lives and the crack initiation locations were predicted from strain based theories, and the analysis results were compared with the test results. Crack propagation behaviors were studied to understand the reason of crack branching and crack growth rates changing under biaxial loading conditions. Crack growth direction was also observed to find the governing factors of the fatigue damage under biaxial loading conditions.


1984 ◽  
Vol 19 (1) ◽  
pp. 51-59 ◽  
Author(s):  
C W Woo ◽  
L H Ling

The angled crack problem has been of growing interest to both designers and researchers for the prediction of the structural integrity of components under complex loading conditions. In the study of angled crack growth behaviour, it is invariably of interest to predict the initial crack growth direction θ0 and the fractures stress σc at which crack initiation occurs. In this paper the merits of the various proposed fracture criteria are reviewed. The biaxial loading effect on the parameter used in each criterion for the prediction of the fracture behaviour is studied. It is observed that the popular testing method employing uniaxial loading of a test specimen is inadequate to demonstrate the suitability of fracture criteria in the prediction of θ0 and σc. It is suggested that with the biaxial loading of a test specimen with an angled crack, a better appraisal of the fracture criteria can be obtained. The experimental results obtained in this study seem to support the maximum stress criteria for both uniaxial and biaxial loading conditions. Both tensions and compression biaxial loading effects have been considered.


2017 ◽  
Vol 86 (1) ◽  
pp. 56-58
Author(s):  
Seiichiro TSUTSUMI ◽  
Fincato RICCARDO ◽  
Mitsuru OHATA ◽  
Tomokazu SANO

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Lijun Zhang ◽  
Shengdun Zhao ◽  
Zhenwei Wang

The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.


Author(s):  
Masao Itatani ◽  
Keisuke Tanaka ◽  
Isao Ohkawa ◽  
Takehisa Yamada ◽  
Toshiyuki Saito

Fatigue tests of smooth and notched round bars of austenitic stainless steels SUS316NG and SUS316L were conducted under cyclic tension and cyclic torsion with and without static tension. Fatigue strength under fully reversed (R=−1) cyclic tension once increased with increasing stress concentration factor up to Kt=1.5, but it decreased from Kt=1.5 to 2.5. Fatigue life increased with increasing stress concentration under pure cyclic torsion, while it decreased with increasing stress concentration under cyclic torsion with static tension. From the measurement of fatigue crack initiation and propagation lives using electric potential drop method, it was found that the crack initiation life decreased with increasing stress concentration and the crack propagation life increased with increasing stress concentration under pure cyclic torsion. Under cyclic torsion with static tension, the crack initiation life also decreased with increasing stress concentration but the crack propagation life decreased or not changed with increasing stress concentration then the total fatigue life of sharper notched specimen decreased. It was also found that the fatigue life of smooth specimen under cyclic torsion with static tension was longer than that under pure cyclic torsion. This behavior could be explained based on the cyclic strain hardening under non-proportional loading and the difference in crack path with and without static tension.


Sign in / Sign up

Export Citation Format

Share Document