scholarly journals Bimodal Viral Vectors and In Vivo Imaging Reveal the Fate of Human Neural Stem Cells in Experimental Glioma Model

2008 ◽  
Vol 28 (17) ◽  
pp. 4406-4413 ◽  
Author(s):  
K. Shah ◽  
S. Hingtgen ◽  
R. Kasmieh ◽  
J. L. Figueiredo ◽  
E. Garcia-Garcia ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Phil Jun Kang ◽  
Daryeon Son ◽  
Tae Hee Ko ◽  
Wonjun Hong ◽  
Wonjin Yun ◽  
...  

Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.


2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2016 ◽  
Vol 11 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Joana S Barbosa ◽  
Rossella Di Giaimo ◽  
Magdalena Götz ◽  
Jovica Ninkovic

Development ◽  
2021 ◽  
Vol 148 (18) ◽  
Author(s):  
Alina Marymonchyk ◽  
Sarah Malvaut ◽  
Armen Saghatelyan

ABSTRACT Neural stem cells (NSCs) are maintained in specific regions of the postnatal brain and contribute to its structural and functional plasticity. However, the long-term renewal potential of NSCs and their mode of division remain elusive. The use of advanced in vivo live imaging approaches may expand our knowledge of NSC physiology and provide new information for cell replacement therapies. In this Review, we discuss the in vivo imaging methods used to study NSC dynamics and recent live-imaging results with respect to specific intracellular pathways that allow NSCs to integrate and decode different micro-environmental signals. Lastly, we discuss future directions that may provide answers to unresolved questions regarding NSC physiology.


PLoS ONE ◽  
2009 ◽  
Vol 4 (9) ◽  
pp. e7218 ◽  
Author(s):  
Mya S. Thu ◽  
Joseph Najbauer ◽  
Stephen E. Kendall ◽  
Ira Harutyunyan ◽  
Nicole Sangalang ◽  
...  

Neurosurgery ◽  
2005 ◽  
Vol 57 (2) ◽  
pp. 411-411
Author(s):  
Seung-Ki Kim ◽  
Peter McL. Black ◽  
Seung U. Kim ◽  
Theresa Cargioli ◽  
Yanping Sun ◽  
...  

2018 ◽  
Vol 233 (2) ◽  
pp. 155-166 ◽  
Author(s):  
Reem Basuodan ◽  
Anna P. Basu ◽  
Gavin J. Clowry

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 267
Author(s):  
Citlali Helenes González ◽  
Suwan N. Jayasinghe ◽  
Patrizia Ferretti

Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.


Sign in / Sign up

Export Citation Format

Share Document