scholarly journals Mechanisms of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Arcuate Nucleus

2005 ◽  
Vol 25 (32) ◽  
pp. 7406-7419 ◽  
Author(s):  
C. Acuna-Goycolea
Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 607-617 ◽  
Author(s):  
Simon McArthur ◽  
Iain C. Robinson ◽  
Glenda E. Gillies

Abstract GH secretion and growth rates are developmentally regulated and sexually dimorphic, but the neuroregulatory mechanisms between birth and puberty are unclear. Using the GHRH-enhanced green fluorescent protein (eGFP) transgenic mouse, in which eGFP provides a strong surrogate signal for identifying GHRH neurons, we showed that numbers in the male arcuate nucleus were double those seen in females at x postnatal day (P)1 and P10, during which time numbers increased 2- to 3-fold. Thereafter (P20, P30, P60, P365) there was a significant trend for numbers to decrease in males and increase in females, such that sex differences were, surprisingly, absent in young and late adulthood. Conversely, we identified the emergence of male-dominant sex differences in the number of processes extended per GHRH perikarya across puberty. Intriguingly, prepubertal gonadectomy (P28), unlike adult gonadectomy, caused a dramatic 40% loss of GHRH cells in both sexes in adulthood and a significant (30%) increase in processes emanating from cell bodies only in females. These findings establish a novel ontogenetic profile for GHRH neurons and suggest previously undiscovered roles for peripubertal gonadal factors in establishing population size in both sexes. They also provide the first demonstration of emergent sex-specific GHRH architecture, which may signal the onset of sex-dependent regulation of activity reported for adult GHRH-eGFP neurons, and its differential regulation by gonadal factors in males and females. This information adds to our knowledge of processes that underpin the emergence of sex-specific GH secretory dynamics and hence biological activity of this pleiotropic hormone.


Endocrinology ◽  
2003 ◽  
Vol 144 (11) ◽  
pp. 4967-4974 ◽  
Author(s):  
Gergely F. Turi ◽  
Zsolt Liposits ◽  
Suzanne M. Moenter ◽  
Csaba Fekete ◽  
Erik Hrabovszky

Abstract The origin of neuropeptide Y (NPY) afferents to GnRH neurons was investigated in male mice. Neonatal lesioning of the hypothalamic arcuate nuclei (ARC) with monosodium glutamate markedly reduced the number of NPY fibers in the preoptic area as well as the frequency of their contacts with perikarya and proximal dendrites of GnRH neurons. Dual-label immunofluorescence studies to determine the precise contribution of the ARC to the innervation of GnRH neurons by NPY axons were carried out on transgenic mice in which enhanced green fluorescent protein was expressed under the control of the GnRH promoter (GnRH-enhanced green fluorescent protein mice). The combined application of red Cy3 and blue AMCA fluorochromogenes established that 49.1 ± 7.3% of NPY axons apposed to green GnRH neurons also contained agouti-related protein (AGRP), a selective marker for NPY axons arising from the ARC. Immunoelectronmicroscopic analysis detected symmetric synapses between AGRP fibers and GnRH-immunoreactive perikarya. Additional triple-fluorescence experiments revealed the presence of dopamine-β-hydroxylase immunoreactivity within 25.4 ± 3.3% of NPY afferents to GnRH neurons. This enzyme marker enabled the selective labeling of NPY pathways ascending from noradrenergic/adrenergic cell populations of the brain stem, thus defining a second important source for NPY-containing fibers regulating GnRH cells. The absence of both topographic markers (AGRP and dopamine-β-hydroxylase) within 26% of NPY contacts suggests that additional sources of NPY fibers to GnRH neurons exist. Future studies will address distinct functions of the two identified NPY systems in the afferent neuronal regulation of the GnRH system.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4138-4147 ◽  
Author(s):  
Sandeep S. Dhillon ◽  
Sean A. McFadden ◽  
Jennifer A. Chalmers ◽  
Maria-Luisa Centeno ◽  
Ginah L. Kim ◽  
...  

Evidence shows that neuropeptide Y (NPY) neurons are involved in mediating the anorexigenic action of leptin via neuronal circuits in the hypothalamus. However, studies have produced limited data on the cellular processes involved and whether hypothalamic NPY neurons are susceptible to cellular leptin resistance. To investigate the direct regulation of NPY secretion by leptin, we used novel NPY-synthesizing, immortalized mHypoA-NPY/green fluorescent protein and mHypoA-59 hypothalamic cell lines derived from adult hypothalamic primary cultures. We report that leptin treatment significantly suppressed NPY secretion in the cells by approximately 20%. We found a decrease in c-fos expression upon leptin exposure, indicating deactivation or hyperpolarization of the neurons. Protein analysis indicated that leptin inhibits AMP-activated protein kinase (AMPK) activity and activates acetyl-coenzyme A carboxylase in NPY neurons, supporting the hypothesis of an AMPK-dependent mechanism. Inhibiting both AMPK with Compound C or phosphatidylinositol 3 kinase (PI3K) with 2-(4-morpholinyl)-8-phenyl-1(4H)-1-benzopyran-4-one hydrochloride prevented the leptin-mediated decrease in NPY secretion, indicating both AMPK- and PI3K-mediated mechanisms. Further, NPY secretion was stimulated by 30% by the AMPK activator, aminoimidazole carboxamide ribonucleotide. Importantly, prolonged leptin exposure in the mHypoA-NPY/green fluorescent protein cells prevented leptin-induced changes in AMPK phosphorylation and suppression of NPY secretion, indicating that NPY neurons are susceptible to leptin resistance. Our studies indicate that AMPK and PI3K pathways are involved in leptin action in NPY neurons and that leptin resistance blocks the feedback response likely required to maintain energy homeostasis.


2009 ◽  
pp. NA-NA
Author(s):  
Armelle Rancillac ◽  
Jeanne Lainé ◽  
Quentin Perrenoud ◽  
Hélène Geoffroy ◽  
Isabelle Ferezou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document