scholarly journals Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein 3-Green Fluorescent Protein)

2003 ◽  
Vol 23 (7) ◽  
pp. 2655-2664 ◽  
Author(s):  
Tatiana Stepanova ◽  
Jenny Slemmer ◽  
Casper C. Hoogenraad ◽  
Gideon Lansbergen ◽  
Bjorn Dortland ◽  
...  
2008 ◽  
Vol 147 (2) ◽  
pp. 611-623 ◽  
Author(s):  
Katrin Brandner ◽  
Adrian Sambade ◽  
Emmanuel Boutant ◽  
Pascal Didier ◽  
Yves Mély ◽  
...  

2003 ◽  
Vol 14 (7) ◽  
pp. 2908-2920 ◽  
Author(s):  
Gilles R.X. Hickson ◽  
Johanne Matheson ◽  
Blake Riggs ◽  
Valerie H. Maier ◽  
Andrew B. Fielding ◽  
...  

Arfophilin is an ADP ribosylation factor (Arf) binding protein of unknown function. It is identical to the Rab11 binding protein eferin/Rab11-FIP3, and we show it binds both Arf5 and Rab11. We describe a related protein, arfophilin-2, that interacts with Arf5 in a nucleotide-dependent manner, but not Arf1, 4, or 6 and also binds Rab11. Arfophilin-2 localized to a perinuclear compartment, the centrosomal area, and focal adhesions. The localization of arfophilin-2 to the perinuclear compartment was selectively blocked by overexpression of Arf5-T31N. In contrast, a green fluorescent protein-arfophilin-2 chimera or arfophilin-2 deletions were localized around the centrosome in a region that was also enriched for transferrin receptors and Rab11 but not early endosome markers, suggesting that the distribution of the endosomal recycling compartment was altered. The arfophilins belong to a conserved family that includes Drosophila melanogaster nuclear fallout, a centrosomal protein required for cellularization. Expression of green fluorescent protein-nuclear fallout in HeLa cells resulted in a similar phenotype, indicative of functional homology and thus implicating the arfophilins in mitosis/cytokinesis. We suggest that the novel dual GTPase-binding capacity of the arfophilins could serve as an interface of signals from Rab and Arf GTPases to regulate membrane traffic and integrate distinct signals in the late endosomal recycling compartment.


2006 ◽  
Vol 339 (2) ◽  
pp. 647-651 ◽  
Author(s):  
Jinyoung Jeong ◽  
Sang Kyu Kim ◽  
Junhyoung Ahn ◽  
Kyoungsook Park ◽  
Eun-Ju Jeong ◽  
...  

2000 ◽  
Vol 11 (1) ◽  
pp. 355-368 ◽  
Author(s):  
Olivier Poupel ◽  
Haralabia Boleti ◽  
Sophie Axisa ◽  
Evelyne Couture-Tosi ◽  
Isabelle Tardieux

Toxoplasma gondii relies on its actin cytoskeleton to glide and enter its host cell. However, T. gondii tachyzoites are known to display a strikingly low amount of actin filaments, which suggests that sequestration of actin monomers could play a key role in parasite actin dynamics. We isolated a 27-kDa tachyzoite protein on the basis of its ability to bind muscle G-actin and demonstrated that it interacts with parasite G-actin. Cloning and sequence analysis of the gene coding for this protein, which we named Toxofilin, showed that it is a novel actin-binding protein. In in vitro assays, Toxofilin not only bound to G-actin and inhibited actin polymerization as an actin-sequestering protein but also slowed down F-actin disassembly through a filament end capping activity. In addition, when green fluorescent protein-tagged Toxofilin was overexpressed in mammalian nonmuscle cells, the dynamics of actin stress fibers was drastically impaired, whereas green fluorescent protein-Toxofilin copurified with G-actin. Finally, in motile parasites, during gliding or host cell entry, Toxofilin was localized in the entire cytoplasm, including the rear end of the parasite, whereas in intracellular tachyzoites, especially before they exit from the parasitophorous vacuole of their host cell, Toxofilin was found to be restricted to the apical end.


2004 ◽  
Vol 186 (15) ◽  
pp. 5153-5156 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Jeffery Errington

ABSTRACT Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 forms part of the B. subtilis cell division machinery.


Sign in / Sign up

Export Citation Format

Share Document