Grazing Behavior of Beef Steers Consuming Different Tall Fescue Types and Lakota Prairie Grass

2007 ◽  
Vol 23 (6) ◽  
pp. 721-727 ◽  
Author(s):  
H.T. Boland ◽  
G. Scaglia ◽  
J.P. Fontenot ◽  
A.O. Abaye ◽  
R.L. Stewart ◽  
...  
Crop Science ◽  
2011 ◽  
Vol 51 (4) ◽  
pp. 1815-1823 ◽  
Author(s):  
Holly T. Boland ◽  
Guillermo Scaglia ◽  
David R. Notter ◽  
Andrew J. Rook ◽  
William S. Swecker ◽  
...  

Crop Science ◽  
2011 ◽  
Vol 51 (3) ◽  
pp. 1314-1324 ◽  
Author(s):  
Holly T. Boland ◽  
Guillermo Scaglia ◽  
David R. Notter ◽  
Andrew J. Rook ◽  
William S. Swecker ◽  
...  

Author(s):  
J.A. Lancashire ◽  
J.L. Brock

Some characteristics of seed quality, establishment rates, performance in mixtures and response to grazing management of 5 new pasture plants with potential in dryland are described. On a dry hill country site in the Wairarapa, the contribution of the sown grasses established in separate plots with clovers under rotational grazing was 'Grasslands Wana' cocksfoot 65%; 'Grasslands Maru' phalaris 23%; 'Grasslands Matua' prairie grass 22%; and 'Grasslands Roa' tall fescue 13% after 2 years. The other main grass species was resident perennial ryegrass which established from buried seed (ca. 240 plants/m*) and had a major impact on the establishment and growth of the sown grasses. On a seasonally dry Manawatu flat land soil 3 grazing managementsviz. set stocked all year (S); rotational all year (R); and combination (Cl (set stocked from lambing to drafting and rotational for the remainder of the year) were applied to mixtures of the new cultivars (except that 'Grasslands Apanui' cocksfoot replaced Wana) with ryegrass and white clover stocked at 20 sheep/ha. After 3 years the contribution of the new cultivars was negligible under S and ryegrass was dominant. The R pastures became cocksfoot dominant and Matua (in winter) and chicory (in summer) contributed more than in the S system. The C system produced the most evenly balanced species contribution with only Roa remaining at (5%. A sub-trial with cocksfoot cultivars demonstrated that Wana maintained better production and tiller density ~ll,000/m2 ) than Apanui (1000/m' ) under set stocking IS). Although some of the new cultivars will require specialised management procedures to fulfil their potential in dryland, the increasing and widespread use of Matua prairie grass in farming suggests that these techniques can be adopted in commercial agriculture provided good technical information is available in a management package when the cultivar is released. Keywords: Dryland, grazing management, mixtures, Matua prairie grass, Wana cocksfoot, Roa tall fescue, Maru phalaris, Chicory


1989 ◽  
Vol 5 (2) ◽  
pp. 28-32
Author(s):  
A.L. Goetsch ◽  
G.E. Murphy ◽  
E.W. Grant ◽  
L.A. Forster ◽  
B.L. Goetsch ◽  
...  
Keyword(s):  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 95-95
Author(s):  
Cecilia Winfrey ◽  
Merlin D Lindemann ◽  
James Matthews

Abstract The hypotheses tested were that (a) summer-long (84 d) grazing of endophyte-infected tall fescue (TE) would alter the count of circulating leukocytes (WBC) and WBC expression of key prolactin and NF-kB pathway genes and (b) that ad libitum intake of an 1:1 blend (MIX) sodium selenite (ISe) and SELPLEX vs ISe in a vitamin-mineral mix (V-M, 27 ppm Se) would ameliorate negative TE effects. Sixteen TE-naïve beef steers depleted of Se were randomly assigned to ad libitum consumption of ISe vs MIX for 35 d. Within Se-form treatments, 2 steers (ISe = 316±37 kg, MIX = 314±39 kg) were randomly assigned to graze each of 4, 2-acre TE paddocks for 84 d and had ad libitum access to their respective V-M. Paddock was the experimental unit (n = 4). The MIXED procedure of SAS was used to assess effect of grazing TE (d 0 vs 84), Se-form (ISe vs MIX), and their interaction on clinical parameters WBC, and relative mRNA content (RT-PCR) in blood. Whole blood Se was 24% greater (P < 0.01) for MIX steers and decreased (P < 0.01) 34% by d 84. Serum prolactin decreased 88% by d 84 and was 98% greater (P < 0.01) for MIX steers on d 84. Monocytes decreased (P < 0.01) 47% with TE and were 67% lower (P = 0.04) in MIX steers. Grazing of TE altered mRNA content of CISH, STA5B, PPIB, AGAP2, and SPRLR; and IL-8, RELA, NFKBIA, TLR, IKBKG, ZAP70, and LCK; of the prolactin (P ≤ 0.05) and NF-kB (P ≤ 0.04) pathways, respectively. In contrast, Se form had no effect (P ≥ 0.07) on mRNA content. Summer-long consumption of TE by steers altered monocyte numbers and expression of prolactin and NF-kB genes, but ad libitum intake of MIX Se forms did not ameliorate these effects.


1998 ◽  
Vol 76 (10) ◽  
pp. 2694 ◽  
Author(s):  
K E Saker ◽  
V G Allen ◽  
J Kalnitsky ◽  
C D Thatcher ◽  
W S Swecker ◽  
...  

1994 ◽  
Vol 72 (4) ◽  
pp. 1068-1075 ◽  
Author(s):  
M. M. Stamm ◽  
T. DelCurto ◽  
M. R. Horney ◽  
S. D. Brandyberry ◽  
R. K. Barton

2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


jpa ◽  
1998 ◽  
Vol 11 (4) ◽  
pp. 487-491 ◽  
Author(s):  
M. H. Hall ◽  
P. J. Levan ◽  
E. H. Cash ◽  
H. W. Harpster ◽  
S. L. Fales

Sign in / Sign up

Export Citation Format

Share Document