Fall-Grazing Management Effects on Production and Persistence of Tall Fescue, Perennial Ryegrass, and Prairie Grass

jpa ◽  
1998 ◽  
Vol 11 (4) ◽  
pp. 487-491 ◽  
Author(s):  
M. H. Hall ◽  
P. J. Levan ◽  
E. H. Cash ◽  
H. W. Harpster ◽  
S. L. Fales
Author(s):  
J.A. Lancashire ◽  
J.L. Brock

Some characteristics of seed quality, establishment rates, performance in mixtures and response to grazing management of 5 new pasture plants with potential in dryland are described. On a dry hill country site in the Wairarapa, the contribution of the sown grasses established in separate plots with clovers under rotational grazing was 'Grasslands Wana' cocksfoot 65%; 'Grasslands Maru' phalaris 23%; 'Grasslands Matua' prairie grass 22%; and 'Grasslands Roa' tall fescue 13% after 2 years. The other main grass species was resident perennial ryegrass which established from buried seed (ca. 240 plants/m*) and had a major impact on the establishment and growth of the sown grasses. On a seasonally dry Manawatu flat land soil 3 grazing managementsviz. set stocked all year (S); rotational all year (R); and combination (Cl (set stocked from lambing to drafting and rotational for the remainder of the year) were applied to mixtures of the new cultivars (except that 'Grasslands Apanui' cocksfoot replaced Wana) with ryegrass and white clover stocked at 20 sheep/ha. After 3 years the contribution of the new cultivars was negligible under S and ryegrass was dominant. The R pastures became cocksfoot dominant and Matua (in winter) and chicory (in summer) contributed more than in the S system. The C system produced the most evenly balanced species contribution with only Roa remaining at (5%. A sub-trial with cocksfoot cultivars demonstrated that Wana maintained better production and tiller density ~ll,000/m2 ) than Apanui (1000/m' ) under set stocking IS). Although some of the new cultivars will require specialised management procedures to fulfil their potential in dryland, the increasing and widespread use of Matua prairie grass in farming suggests that these techniques can be adopted in commercial agriculture provided good technical information is available in a management package when the cultivar is released. Keywords: Dryland, grazing management, mixtures, Matua prairie grass, Wana cocksfoot, Roa tall fescue, Maru phalaris, Chicory


2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


Author(s):  
G.D. Milne ◽  
S.C. Moloney ◽  
D.R. Smith

A drought pasture demonstration programme was established on the east coast of the North Island, between 1990 and 1992. Dryland pasture species were established on 1500 ha, on 91 farms, to encourage other farmers to use them rather than relying totally on perennial ryegrass. 97% of pastures were established successfully, proving to farmers that dryland pasture species can be established reliably. As well as establishing pastures after cultivation, it was also proven that these species can be reliably established by direct drilling, or by oversowing onto hill country, using techniques developed in this programme. Some farmers monitored the amount of grazing obtained from the new pastures, and found that on average they received 112% more grazing annually than resident pastures, the largest increases occurring in summer. Many farmers also reported better animal growth rates on the new pastures, especially in summer and autumn. Monitoring of species presence in tiller cores has shown the sown species to be persisting well to date (Nov 1992), with the exceptions of tall fescue and grazing brome when sown onto hill country. The programme reinforced factors important in the establishment and grazing management of dryland pastures. The programme has brought about a noticeable change in attitude to dryland species, and seed sales have increased markedly while ryegrass sales have decreased. Keywords: Cichorium intybus, Dactylis glomerata, drought, Festuca arundinacea, demonstration, dryland pasture establishment


Author(s):  
G.R. Edwards ◽  
R.J. Lucas ◽  
M.R. Johnson

The grazing response of ewe hoggets offered tall fescue, endophyte-infected (+E) or endophyte-free (-E) perennial ryegrass all sown with white clover into a fertile silt loam was examined in April 1990. In a second experiment 2 grazings were observed where 5 grasses had been overdrilled into old lucerne growing on stony infertile land. Pregnaht ewes (August) and ewes with young lambs (October) grazed 3 replicates of tall fescue, +E perennial ryegrass, cocksfoot, phalaris and prairie grass. After the August grazing nitrogen fertiliser was applied at 0 and 300 kg N/ha to 5 x 2 m subplots in each 30 x 9 m grass plot. April observations showed that on day one 76% of grazing time was on tall fescue. During the first 4 days of grazing grass leaf height decreased 60 mm in tall fescue, 43 mm in +E and 42 mm in -E ryegrass while in the last 5 days decreases were 5, 3 and 25 mm. Over the 9 days' grazing, pseudostem height declined 5.2, 1.5 and 5.0 mm, green grass cover from 62 to 30,65 to 44, and 68 to 33%, and herbage removal was 940, 1100 and 1300 kg DM/ ha from tall fescue, +E and -E ryegrasses. During the first 3 days of the August grazing, grass leaf heights of cocksfoot and +E ryegrass declined at a much slower rate than in the other 3 species. The October grazing showed a similar defoliation pattern on plots without N. Addition of 300 kg N/ ha resulted in very rapid defoliation of all 5 species during the first day of the 7-day grazing period. April grazing showed that initially sheep preferred tall fescue. Even though grazing time was similar for +E and -E ryegrasses the hoggets consumed less +E than -E ryegrass, possibly owing to reluctance to penetrate the +E pseudostem horizon. The August and October grazings demonstrated the ability of sheep to discriminate between grass species and strong rejection of cocksfoot and +E ryegrass. However, N at a rate similar to a urine patch produced leaf in all species which was equally attractive to sheep. The reduced intake of +E ryegrass measured in the April grazing may explain some of the lower animal performance of sheep on +E ryegrass pastures. Equally, grazing preference shown by rate of canopy height decline in any pasture is probably highly correlated with pasture intake and animal productivity. Keywords: Acremonium lolii, Bromus willdenowii, Dactylis glomerata, Festuca arundinacea, Lolium perenne, nitrogen-fertilised pasture, Phalaris aquatica, sheep grazing preference


Author(s):  
S.C. Moloney ◽  
R.J.M. Hay ◽  
J.A. Lancashire

The performance of Kopu white clover was compared with that ot Huia and Pitau under intensive dairy grazing management at Taupo and the Manawatu. Sampling included both dry matter production and detailed white clover stolon and leaf measurements. These trials have shown that there are significant advantages to be gained from the use of Kopu over both Huia and Pitau. in rotationally grazed cattle swards, particularly during autumn and winter. At the Taupe site where Kopu was sown with high endophyte perennial ryegrass, seasonal white clover yields from Kopu were 120% greater than from Huia in autumn and 160% in winter. At the Manawatu site with Matua prairie grass as the grass component, the advantage of Kopu over Pitau was 105% in autumn, increasing lo 150% by winter. These results are discussed in relation to the significance of Kopu to dairy farming in the central and southern North Wand region. Keywords: rotationally grazed swards. cool season activity, erect habit, dairy pasture, intensive dairying


2006 ◽  
Vol 46 (1) ◽  
pp. 45 ◽  
Author(s):  
K. Sinclair ◽  
W. J. Fulkerson ◽  
S. G. Morris

The influence of regrowth time on the forage quality of prairie grass (Bromus willdenowii Kunth. cv. Matua), perennial ryegrass (Lolium perenne L. cv. Dobson) and tall fescue (Festuca arundinacea Schreb. cv. Dovey) was determined under non-limiting soil nutrient and moisture growth conditions. In a glasshouse, individual plants of each species were arranged in separate mini-swards and were defoliated at 6, 10 and 14 weeks after sowing to a stubble height of 60 mm for perennial ryegrass and tall fescue and 90 mm for prairie grass. Following defoliation at 14 weeks, selected individual plants were cut to the previous stubble height as each new leaf per tiller was fully expanded, to provide leaf material for nutrient analysis, until prairie grass, perennial ryegrass and tall fescue had attained 6–8, 5 and 3 leaves/tiller, respectively. The concentration of leaf phosphorus (P) decreased from 6.6 to 5.9 g/kg dry matter (DM) in prairie grass, increased from 5.9 to 6.9 g/kg DM in perennial ryegrass, and initially increased to 8.8 g/kg DM and then decreased to 8.4 g/kg DM in tall fescue. The mean potassium (K) content in perennial ryegrass was 29.6 g/kg DM and was not significantly affected by duration of regrowth, whereas K content in prairie grass and tall fescue fell from 51.7 to 43.6 g/kg DM and from 55.5 to 47.9 g/kg DM, respectively, after the first leaf per tiller formed. Calcium levels increased with regrowth in all species and at the completion of regrowth were 5.8, 3.8 and 3.4 g/kg DM in prairie grass, perennial ryegrass and tall fescue, respectively. The magnesium (Mg) and sodium (Na) content of perennial ryegrass showed no change throughout the regrowth period and had measured values of 2.5 and 2.8 g/kg DM, respectively. For tall fescue, the concentration of leaf Mg decreased from 0.30 to 0.24 g/kg DM, whereas the Na concentration increased from 1.2 to 2.1 g/kg DM. The Mg content of prairie grass remained constant at 2.0 g/kg DM, whereas the Na content increased from 2.7 to 4.3 (g/kg DM). While the crude protein content of all grasses declined over the regrowth period, values remained over 200 g/kg DM, well above the recommended content for lactating cows. The leaf water-soluble carbohydrate (WSC) of prairie grass and perennial ryegrass increased over the regrowth period from 29.7 to 43.9 g/kg DM and from 25.9 to 72.5 g/kg DM, respectively, whereas tall fescue showed no change at 55.6 g/kg DM. The change in in vitro organic matter digestibility (OMD) with age was 125 and 44 (g/kg DM) for tall fescue and perennial ryegrass, respectively. The OMD of prairie grass decreased following the onset of stem elongation at the 5-leaves/tiller stage of regrowth from 824 to 756 g/kg DM. In this glasshouse study, the pattern of change in K and Ca content was the same as observed in the field but the absolute content, including that of Na, was greatly elevated, particularly in prairie grass. In terms of nutrient content capability, N, P and K were readily taken up by these C3 grasses, while the uptake of Mg and Na appear to reflect genetic differences between species. The differences in forage quality as determined under optimal growth conditions in this study, as compared with field grown forage, are presumed to indicate possible soil nutrient deficiencies in field situations.


1997 ◽  
Vol 129 (1) ◽  
pp. 19-31 ◽  
Author(s):  
D. E. HUME ◽  
J. L. BROCK

The effects of contrasting management systems either of infrequent rotational grazing by town milk supply dairy cattle, or of frequent defoliation by continuously grazing sheep and beef cattle, on the morphology of independent plants and populations of ‘Grasslands Roa’ tall fescue in mixed pastures, were measured over 1 year (1992/93) in New Zealand. Volunteer perennial ryegrass plants were also measured for comparison.While both species exhibited a similar pattern of clonal growth, tall fescue developed more plants of higher branching complexity than perennial ryegrass, chiefly through maintaining more connective stems, as herbage production was confined to the three youngest branching orders in both species. Greater resistance to microbial degradation of old stems through poorer quality organic matter (wide C[ratio ]N ratio) compared to perennial ryegrass may be responsible for the greater complexity of fescue plants. In addition, tillering rates in tall fescue were three times lower which was offset by greater longevity and size of leaves and tillers, compared to perennial ryegrass. As a result, seasonal fluctuation in the distribution of plants among the various branching orders in tall fescue was small, producing a more stable population relative to the distinct seasonal changes in the population of perennial ryegrass plants. Grazing management had no effect on the seasonal population structure in either species.Differences in plant structure due to grazing management were small, with only slightly more tillers on sheep-grazed than on cattle-grazed tall fescue plants. The major effect of grazing management was on dry weight or size of plant components. Cattle-grazed tall fescue plants were 120% heavier, with greater numbers and lengths of stolons and flower heads than those under sheep grazing. For the volunteer perennial ryegrass, the difference was only 65%, possibly due to competition from the more vigorous tall fescue under rotational cattle grazing.Both species produced stolons throughout the year, although these were primarily associated with reproductive growth in spring. In tall fescue, an additional distinction was made between stolon and rhizome, the latter occurring mainly in the summer–autumn. Their possible functions in plant growth are discussed.


2009 ◽  
Vol 60 (11) ◽  
pp. 1071 ◽  
Author(s):  
J. S. Neal ◽  
W. J. Fulkerson ◽  
R. Lawrie ◽  
I. M. Barchia

Perennial ryegrass (Lolium perenne L.) is the dominant forage grazed by dairy cows in Australia; however, poor persistence has led to an increasing interest in alternative forages. This study was conducted to identify more productive and/or persistent perennial forage species than perennial ryegrass. We evaluated 15 perennial forages under optimum irrigation (I1) and 2 nominated deficit irrigation (I2, 66% of irrigation water applied to I1; I3, 33% of irrigation water applied to I1) regimes, over 3 years at Camden, NSW (34°3′S, 150°39′E), on a brown Dermosol in a warm temperate climate. The forages were: perennial ryegrass, cocksfoot (Dactylis glomerata L.), phalaris (Phalaris aquatica L.), prairie grass (Bromus catharticus M. Vahl), tall fescue (Schedonorus phoenix (Scop.) Holub), kikuyu (Pennisetum clandestinum Hochst. ex. chiov.), paspalum (Paspalum dilatatum Poir.), birdsfoot trefoil (Lotus corniculatus L.), lucerne (Medicago sativa L.), red clover (Trifolium pratense L.), strawberry clover (Trifolium fragiferum L.), sulla (Hedysarum coronarium L.), white clover (Trifolium repens L.), chicory (Cichorium intybus L.), and plantain (Plantago lanceolata L.). Under non-limiting conditions of water and fertility, tall fescue, kikuyu, and prairie grass had the highest mean annual yield over the 3 years of this experiment (24.8–25.5 t dry matter (DM)/ha), which was significantly greater (P < 0.05) than perennial ryegrass (21.1 t DM/ha). Kikuyu was significantly higher than all forages under the extreme I3 deficit irrigation treatment, with mean annual yields of 17.0 t DM/ha. In contrast, the mean yield of white clover was significantly lower (P < 0.05) than of any other forage at only 5.0 t DM/ha, a 70% decline in yield compared with I1. Lucerne was the most tolerant species to deficit irrigation, with a mean annual yield decline (P < 0.05) between the I1 and I3 treatment of only 22%. This study has shown that there are large differences in the relative yield potential of forages and, importantly, indicates the possibility of increasing yield of perennial forages by at least 2-fold on commercial farms, by improving water, and fertiliser management. However, while yield is an important criterion for choosing dairy forages, it is only one factor in a complex system, and choice of forages must be considered on a whole-farm basis and include water-use efficiency, nutritive value, costs of production, and risk.


Author(s):  
D.E. Hume ◽  
D.J. Barker

Natural reseeding of 5 grass species was monitored over 2-3 years in summer dry hill country in central Wairarapa and Taupo. Measurements included numbers of seedheads and seedlings appearing, survival andgrowth of tagged seedlings and their contribution to sward tiller populations. Effects of fertiliser (high, low) and summer grazing managements (continuously summer grazed, spelled from grazing during summer) were examined. All seedlings appeared in autumn/early winter. No seedlings of phalaris and few tall fescue and cocksfoot seedlings were found, and all failed to survive the first summer. Reseeding of prairie grass was significant, failure of which corresponded with a general decline in persistence of prairie grass swards. With summer spelling in central Wairarapa, prairie grass had relatively high seedling numbers (144/m?), seedling survival (10%) and contribution (11%) to prairie grass tillers in the sward. Reseeding was most prolific for perennial ryegrass (Nui and resident ryegrass) (283 seedlings appeared/m2). Summer spelling gave high ryegrass seedling numbers in central Wairarapa but lower numbers at Taupo, compared with summer grazing. At both sites, however, summer grazing increasedryegrass seedling survival and seedling contribution to the total sward (11% of total tillers), despite inherently dense, competitive swards. Effects of fertiliser were generally minor. Variation between sites and years was considerable. Reseeding had little effect on numbers of new plants in the sward, but may be significant when considered cumulativley over a number of years. Keywords natural reseeding, summer dry hill country, summer grazing managements, fertiliser, prairie grass, ryegrass, phalaris, cocksfoot, tall fescue


Author(s):  
Cd Meurk ◽  
J.D. Turner

Infertile hill country grasslands are a vastly under-utilised pastoral resource in New Zealand. Three years of trial results on this class of land in eastern Southland are summarised. Five grasses (Grasslands Nui ryegrass, Wana cocksfoot, Matua prairie grass, Roa tall fescue and Maru phalaris) were oversown together with Huia white clover and subterranean clover. These were compared with a resident pasture, all under two fertility levels and two rotational grazing managements, and with unimproved pasture. The use of fertiliser and rotational grazing doubled the productivity of the unimproved rangeland to ca. 10,500 kg DMlhalyear. The addition of white clover increased yield to 12,000 kg, and improved grasses increased this further to 14,000 kg. Keywords: agronomy, fertiliser, grasses, grazing management, hill country, oversowing, pasture composition, pasture yield.


Sign in / Sign up

Export Citation Format

Share Document