scholarly journals Metformin activity in an in vitro model of posterior capsule opacification

2018 ◽  
Vol 17 (4) ◽  
pp. 105-112
Author(s):  
Jade Marie Lasiste ◽  
Pablo Zoroquiain ◽  
Denise Miyamoto ◽  
Miguel Burnier

Purpose: To determine the activity of metformin in an in vitro model of posterior capsule opacification (PCO).Design: Experimental laboratory research. Methods: The HLE-B3 lens epithelial cell line was treated with PCO induction media (PCOM) supplemented with transforming growth factor-beta (TGF-β) and fibroblast growth factor (FGF). Different metformin concentrations (0-100 mM) were used. The following cellular parameters were assessed: (1) survival, using a viability assay; (2) morphology, via microscopy and image analysis; (3) migration, using the wound assay; (4) and expression of epithelial (Pax6, E-cadherin) and mesenchymal (α-smooth muscle actin or α-SMA, fibronectin) markers via Western blot. Expression of the uptake receptor SLC22A1 was evaluated in HLE-B3 and in human donor eyes with Western blot and immunohistochemistry, respectively. Statistical analysis of variance (ANOVA) with Tukey post-hoc test was done for analysis of cytotoxicity, morphology and migration data. Results: Metformin was lethal to half (LC50) of the cells at 30 mM, and a decrease in viability (P<0.05) was noted at 5 mM. LECs in PCOM treated with 1 mM metformin showed increased Pax6 and E-cadherin and decreased α-SMA and fibronectin expression. LECs in PCOM treated with metformin also maintained epithelial morphology. Migration was inhibited with 0.5 mM metformin (P<0.05). Both HLE-B3 and the lens epithelium in donor eyes were found to express SLC22A1.Conclusion: Metformin decreased survival and migration in LECs, maintaining epithelial phenotype and reducing mesenchymal marker expression. Metformin therefore has potential as an adjunct in PCO prevention.Financial Disclosures: This work was partially funded by Mitacs Canada.

2003 ◽  
Vol 29 (8) ◽  
pp. 1593-1600 ◽  
Author(s):  
Austen A.R. El-Osta ◽  
David J. Spalton ◽  
John Marshall

1994 ◽  
Vol 267 (6) ◽  
pp. L728-L738 ◽  
Author(s):  
F. Kheradmand ◽  
H. G. Folkesson ◽  
L. Shum ◽  
R. Derynk ◽  
R. Pytela ◽  
...  

Alveolar epithelial type II cells are essential for regenerating an intact alveolar barrier after destruction of type I cells in vivo. The first objective of these experimental studies was to develop an in vitro model to quantify alveolar epithelial cell wound repair. The second objective was to investigate mechanisms of alveolar epithelial cell wound healing by studying the effects of serum and transforming growth factor-alpha (TGF-alpha) on wound closure. Primary cultures of rat alveolar type II cells were prepared by standard methods and grown to form confluent monolayers in 48 h. Then a wound was made by denuding an area (mean initial area of 2.1 +/- 0.6 mm2) of the monolayer. Re-epithelialization of the denuded area over time in the presence or absence of serum was measured using quantitative measurements from time-lapse video microscopy. The half time of wound healing was significantly enhanced in the presence of serum compared with serum-free conditions (2.4 +/- 0.2 vs. 17.4 +/- 0.8 h, P < 0.001). We then tested the hypothesis that TGF-alpha is an important growth factor for stimulating wound repair of alveolar epithelial cells. Exogenous addition of TGF-alpha in serum-free medium resulted in a significantly more rapid wound closure, and, furthermore, the addition of a monoclonal antibody to TGF-alpha in the presence of serum significantly decreased fourfold the rate of wound closure. Measurement of internuclear cell distance confirmed that both cell motility and cell spreading were responsible for closure of the wound. These data demonstrate that 1) the mechanisms of alveolar cell repair can be studied in vitro and that 2) TGF-alpha is a potent growth factor that enhances in vitro alveolar epithelial cell wound closure.


Cytotherapy ◽  
2010 ◽  
Vol 12 (7) ◽  
pp. 870-880 ◽  
Author(s):  
Katrin Montzka ◽  
Tobias Führmann ◽  
Jochen Müller-Ehmsen ◽  
Michael Wöltje ◽  
Gary A. Brook

Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 65 ◽  
Author(s):  
Agata Zykwinska ◽  
Mélanie Marquis ◽  
Mathilde Godin ◽  
Laëtitia Marchand ◽  
Corinne Sinquin ◽  
...  

Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-β1 (TGF-β1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-β1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-β1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-β1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.


Sign in / Sign up

Export Citation Format

Share Document