scholarly journals Efficiently Learning Metric and Topological Maps with Autonomous Service Robots (Effizientes Lernen metrischer und topologischer Karten mit autonomen Servicerobotern)

2007 ◽  
Vol 49 (4) ◽  
Author(s):  
Cyrill Stachniss ◽  
Giorgio Grisetti ◽  
Oscar Martinez Mozos ◽  
Wolfram Burgard

SummaryModels of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Majid Amirfakhrian ◽  
Mahboub Parhizkar

AbstractIn the next decade, machine vision technology will have an enormous impact on industrial works because of the latest technological advances in this field. These advances are so significant that the use of this technology is now essential. Machine vision is the process of using a wide range of technologies and methods in providing automated inspections in an industrial setting based on imaging, process control, and robot guidance. One of the applications of machine vision is to diagnose traffic accidents. Moreover, car vision is utilized for detecting the amount of damage to vehicles during traffic accidents. In this article, using image processing and machine learning techniques, a new method is presented to improve the accuracy of detecting damaged areas in traffic accidents. Evaluating the proposed method and comparing it with previous works showed that the proposed method is more accurate in identifying damaged areas and it has a shorter execution time.


2021 ◽  
Author(s):  
K. Emma Knowland ◽  
Christoph Keller ◽  
Krzysztof Wargan ◽  
Brad Weir ◽  
Pamela Wales ◽  
...  

<p>NASA's Global Modeling and Assimilation Office (GMAO) produces high-resolution global forecasts for weather, aerosols, and air quality. The NASA Global Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke. The assimilation system is being expanded to include chemically reactive trace gases. We discuss current capabilities of the GEOS Constituent Data Assimilation System (CoDAS) to improve atmospheric composition modeling and possible future directions, notably incorporating new observations (TROPOMI, geostationary satellites) and machine learning techniques. We show how machine learning techniques can be used to correct for sub-grid-scale variability, which further improves model estimates at a given observation site.</p>


Author(s):  
Ali Gürcan Özkil ◽  
Thomas Howard

This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use of 2D visual tags allows encoding information physically at places-of-interest. Moreover, using physical characteristics of the visual tags (i.e. paper size) is exploited to recover relative poses of the tags in the environment using a simple camera. This method extends tag encoding to simultaneous localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots.


Author(s):  
Anjali Dhall ◽  
Sumeet Patiyal ◽  
Neelam Sharma ◽  
Salman Sadullah Usmani ◽  
Gajendra P S Raghava

Abstract Interleukin 6 (IL-6) is a pro-inflammatory cytokine that stimulates acute phase responses, hematopoiesis and specific immune reactions. Recently, it was found that the IL-6 plays a vital role in the progression of COVID-19, which is responsible for the high mortality rate. In order to facilitate the scientific community to fight against COVID-19, we have developed a method for predicting IL-6 inducing peptides/epitopes. The models were trained and tested on experimentally validated 365 IL-6 inducing and 2991 non-inducing peptides extracted from the immune epitope database. Initially, 9149 features of each peptide were computed using Pfeature, which were reduced to 186 features using the SVC-L1 technique. These features were ranked based on their classification ability, and the top 10 features were used for developing prediction models. A wide range of machine learning techniques has been deployed to develop models. Random Forest-based model achieves a maximum AUROC of 0.84 and 0.83 on training and independent validation dataset, respectively. We have also identified IL-6 inducing peptides in different proteins of SARS-CoV-2, using our best models to design vaccine against COVID-19. A web server named as IL-6Pred and a standalone package has been developed for predicting, designing and screening of IL-6 inducing peptides (https://webs.iiitd.edu.in/raghava/il6pred/).


2019 ◽  
Vol 32 (13) ◽  
pp. 8811-8828 ◽  
Author(s):  
Ihab S. Mohamed ◽  
Alessio Capitanelli ◽  
Fulvio Mastrogiovanni ◽  
Stefano Rovetta ◽  
Renato Zaccaria

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1322
Author(s):  
Wilfredo Graterol ◽  
Jose Diaz-Amado ◽  
Yudith Cardinale ◽  
Irvin Dongo ◽  
Edmundo Lopes-Silva ◽  
...  

For social robots, knowledge regarding human emotional states is an essential part of adapting their behavior or associating emotions to other entities. Robots gather the information from which emotion detection is processed via different media, such as text, speech, images, or videos. The multimedia content is then properly processed to recognize emotions/sentiments, for example, by analyzing faces and postures in images/videos based on machine learning techniques or by converting speech into text to perform emotion detection with natural language processing (NLP) techniques. Keeping this information in semantic repositories offers a wide range of possibilities for implementing smart applications. We propose a framework to allow social robots to detect emotions and to store this information in a semantic repository, based on EMONTO (an EMotion ONTOlogy), and in the first figure or table caption. Please define if appropriate. an ontology to represent emotions. As a proof-of-concept, we develop a first version of this framework focused on emotion detection in text, which can be obtained directly as text or by converting speech to text. We tested the implementation with a case study of tour-guide robots for museums that rely on a speech-to-text converter based on the Google Application Programming Interface (API) and a Python library, a neural network to label the emotions in texts based on NLP transformers, and EMONTO integrated with an ontology for museums; thus, it is possible to register the emotions that artworks produce in visitors. We evaluate the classification model, obtaining equivalent results compared with a state-of-the-art transformer-based model and with a clear roadmap for improvement.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Josh Schaefferkoetter ◽  
Jianhua Yan ◽  
Claudia Ortega ◽  
Andrew Sertic ◽  
Eli Lechtman ◽  
...  

Abstract Goal PET is a relatively noisy process compared to other imaging modalities, and sparsity of acquisition data leads to noise in the images. Recent work has focused on machine learning techniques to improve PET images, and this study investigates a deep learning approach to improve the quality of reconstructed image volumes through denoising by a 3D convolution neural network. Potential improvements were evaluated within a clinical context by physician performance in a reading task. Methods A wide range of controlled noise levels was emulated from a set of chest PET data in patients with lung cancer, and a convolutional neural network was trained to denoise the reconstructed images using the full-count reconstructions as the ground truth. The benefits, over conventional Gaussian smoothing, were quantified across all noise levels by observer performance in an image ranking and lesion detection task. Results The CNN-denoised images were generally ranked by the physicians equal to or better than the Gaussian-smoothed images for all count levels, with the largest effects observed in the lowest-count image sets. For the CNN-denoised images, overall lesion contrast recovery was 60% and 90% at the 1 and 20 million count levels, respectively. Notwithstanding the reduced lesion contrast recovery in noisy data, the CNN-denoised images also yielded better lesion detectability in low count levels. For example, at 1 million true counts, the average true positive detection rate was around 40% for the CNN-denoised images and 30% for the smoothed images. Conclusion Significant improvements were found for CNN-denoising for very noisy images, and to some degree for all noise levels. The technique presented here offered however limited benefit for detection performance for images at the count levels routinely encountered in the clinic.


2021 ◽  
pp. 194855062110349
Author(s):  
Bastian Jaeger ◽  
Alex L. Jones

Which facial characteristics do people rely on when forming personality impressions? Previous research has uncovered an array of facial features that influence people’s impressions. Even though some (classes of) features, such as resemblances to emotional expressions or facial width-to-height ratio (fWHR), play a central role in theories of social perception, their relative importance in impression formation remains unclear. Here, we model faces along a wide range of theoretically important dimensions and use machine learning techniques to test how well 28 features predict impressions of trustworthiness and dominance in a diverse set of 597 faces. In line with overgeneralization theory, emotion resemblances were most predictive of both traits. Other features that have received a lot of attention in the literature, such as fWHR, were relatively uninformative. Our results highlight the importance of modeling faces along a wide range of dimensions to elucidate their relative importance in impression formation.


Online shopping's have achieved an immense growth. All like to do it as there is no need to physically to the shop and we have a wide range of collections available in the online sites from which we can actually buy the product. The customers usually tend to purchase a product that has a good customer review and has the highest rating. Numerous reviews are given for a single product and the most of the important reviews are not organized well which makes it disappear from the other reviews. Numerous researchers have worked on structuring the reviews for various purposes. In this work we propose a sentimental analysis of customer reviews for various hotel items. All the items are reviewed by the customers and the proposed work makes an analysis of the reviews obtained for a particular item in all the available shops. This analysis is helpful injudging the most likely consumed food by the customers around and can get to know the competiveness of the product being delivered to the customers. Machine Learning techniques and Natural language Processing (NLP) are used for the proposed work and is observed to produce an efficient result.


Sign in / Sign up

Export Citation Format

Share Document