Model calculations and evaluation of nuclear data for medical radioisotope production

2001 ◽  
Vol 89 (4-5) ◽  
Author(s):  
Yu. N. Shubin

A review of recent results on the model calculations and evaluations connected with the development of a reference charged particle cross section database for medical radioisotope production is presented. Nuclear reaction models and codes used in those investigations are briefly outlined, with examples of a few calculation results. The method of statistical optimization of experimental data, based on discrete optimization with rational functions (Pade approximation) is described, and the results of evaluations of excitation functions are presented.

2002 ◽  
Vol 39 (sup2) ◽  
pp. 1282-1285 ◽  
Author(s):  
Syed M. Qaim ◽  
Ferenc T. Tárkányi ◽  
Pavel Obložinský ◽  
Khunab Gul ◽  
Alex Hermanne ◽  
...  

2020 ◽  
Vol 239 ◽  
pp. 19005
Author(s):  
Zhang Wenxin ◽  
Qiang shenglong ◽  
Yin qiang ◽  
Cui Xiantao

Neutron cross section data is the basis of nuclear reactor physical calculation and has a decisive influence on the accuracy of calculation results. AFA3Gassemble is widely used in nuclear power plants. CENACE is an ACE format multiple-temperature continuous energy cross section library that developed by China Nuclear Data Centre. In this paper, we calculated the AFA3G assemble by RMC.We respectively used ENDF6.8/, ENDF/7 and CENACE data for calculation. The impact of nuclear data on RMC calculation is studied by comparing the results of different nuclear data.


2019 ◽  
Vol 10 ◽  
pp. 165
Author(s):  
C. Tsabaris ◽  
C. T. Papadopoulos ◽  
R. Vlastou ◽  
A. A. Pakou ◽  
P. A. Assimakopoulos ◽  
...  

The 7Li + 11 Β reaction has been studied in the energy range from a little below to about three times the Coulomb barrier by measuring the cross section of the 7- ray transitions in the residual nuclei produced. Statistical compound nucleus calculations have been performed in order to interpret the experimental data as well as to extract cross sections of the individual exit channels. The statistical compound nucleus theory can reproduce rather well the absolute j - ray and the various reaction channel excitation functions.


2020 ◽  
Vol 6 ◽  
pp. 19
Author(s):  
Denise Neudecker ◽  
Morgan Curtis White ◽  
Diane Elizabeth Vaughan ◽  
Gowri Srinivasan

Concerns within the nuclear data community led to substantial increases of Neutron Data Standards (NDS) uncertainties from its previous to the current version. For example, those associated with the NDS reference cross section 239Pu(n,f) increased from 0.6–1.6% to 1.3–1.7% from 0.1–20 MeV. These cross sections, among others, were adopted, e.g., by ENDF/B-VII.1 (previous NDS) and ENDF/B-VIII.0 (current NDS). There has been a strong desire to be able to validate these increases based on objective criteria given their impact on our understanding of various application uncertainties. Here, the “Physical Uncertainty Bounds” method (PUBs) by Vaughan et al. is applied to validate evaluated uncertainties obtained by a statistical analysis of experimental data. We investigate with PUBs whether ENDF/B-VII.1 or ENDF/B-VIII.0 239Pu(n,f) cross-section uncertainties are more realistic given the information content used for the actual evaluation. It is shown that the associated conservative (1.5–1.8%) and minimal realistic (1.1–1.3%) uncertainty bounds obtained by PUBs enclose ENDF/B-VIII.0 uncertainties and indicate that ENDF/B-VII.1 uncertainties are underestimated.


2019 ◽  
Vol 319 (2) ◽  
pp. 533-666 ◽  
Author(s):  
F. T. Tárkányi ◽  
A. V. Ignatyuk ◽  
A. Hermanne ◽  
R. Capote ◽  
B. V. Carlson ◽  
...  

2018 ◽  
Vol 4 ◽  
pp. 46
Author(s):  
Ivan Kodeli

Both the availability and the quality of covariance data improved over the last years and many recent cross-section evaluations, such as JENDL-4.0, ENDF/B-VII.1, JEFF-3.3, etc. include new covariance data compilations. However, several gaps and inconsistencies still persist. Although most modern nuclear data evaluations are based on similar (or even same) sets of experimental data, and the agreement in the results obtained using different cross-sections is reasonably good, larger discrepancies were observed among the corresponding covariance data. This suggests that the differences in the covariance matrix evaluations reflect more the differences in the (mathematical) approaches used and possibly in the interpretations of the experimental data, rather than the different nuclear experimental data used. Furthermore, “tuning” and adjustments are often used in the process of nuclear data evaluations. In principle, if adjustments or “tunings” are used in the evaluation of cross-section then the covariance matrices should reflect the cross-correlations introduced in this process. However, the presently available cross-section covariance matrices include practically no cross-material correlation terms, although some evidence indicate that tuning is present. Experience in using covariance matrices of different origin (such as JEFF, JENDL, ENDF, TENDL, SCALE, etc.) in sensitivity and uncertainty analysis of vast list of cases ranging from fission to fusion and from criticality, kinetics and shielding to adjustment applications are presented. The status of the available covariance and future needs in the areas including secondary angular and energy distributions is addressed.


Sign in / Sign up

Export Citation Format

Share Document