Radiolanthanides in endoradiotherapy: an overview

2007 ◽  
Vol 95 (6) ◽  
Author(s):  
Frank Rösch

Endoradiotherapy (targeted radionuclide therapy) is a systemic approach, involving a radiolabeled targeting vector with a well characterized biochemical strategy to selectively deliver a cytotoxic level of radiation to a disease site on a cellular/molecular level. The group of radiolanthanides has been considered both for imaging and therapy over many years. Some radiolanthanides have been and are increasingly applied for therapeutic purposes.However, the clinical use of endoradiotherapeuticals containing radiolanthanides requires a complex and interdisciplinary approach. It involves, among other factors, the choice of the most suitable lanthanide radionuclide (in terms of nuclear decay parameters such as type and energy of the particles emitted, half-life, decay products

2021 ◽  
Author(s):  
Markus Staudt ◽  
Matthias M. Herth ◽  
Christian B.M. Poulie

Personalized medicine is becoming an integral part of our healthcare system, in which theranostics play a fundamental role. Nanomedicines such as monoclonal antibodies are a commonly used targeting vector in such approaches due to their outstanding targeting abilities as well as their capabilities to function as drug delivery vehicles. However, the application of nanomedicines in a clinical setting is connected with several challenges. For example, nanomedicines typically possess slow pharmacokinetics in respect to target accumulation and excretion. For targeted radionuclide therapy, this results in high radiation burden to healthy tissue. For drug delivery systems, long circulation and excretion times of the nanomedicine complicate site-specific release approaches and limit as such the usability of these strategies. One way to circumvent these challenges is the use of pretargeting strategies, which allow to separate the accumulation and excretion of nanomedicines from the actual diagnostic or therapeutic application. As such, pretargeting allows to use theranostic concepts utilizing the same nanomedicine and determine the success chances with diagnostic measures before initiating therapy. This chapter will explain the concept of pretargeted theranostics, which pretargeting systems have thus far been developed and compare how these systems performed.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5776
Author(s):  
Elisabeth von Guggenberg ◽  
Petra Kolenc ◽  
Christof Rottenburger ◽  
Renata Mikołajczak ◽  
Alicja Hubalewska-Dydejczyk

The cholecystokinin-2 receptor (CCK2R) has been a target of interest for molecular imaging and targeted radionuclide therapy for two decades. However, so far CCK2R targeted imaging and therapy has not been introduced in clinical practice. Within this review the recent radiopharmaceutical development of CCK2R targeting compounds and the ongoing clinical trials are presented. Currently, new gastrin derivatives as well as nonpeptidic substances are being developed to improve the properties for clinical use. A team of specialists from the field of radiopharmacy and nuclear medicine reviewed the available literature and summarized their own experiences in the development and clinical testing of CCK2R targeting radiopharmaceuticals. The recent clinical trials with novel radiolabeled minigastrin analogs demonstrate the potential for both applications, imaging as well as targeted radiotherapy, and reinforce the clinical applicability within a theranostic concept. The intense efforts in optimizing CCK2R targeting radiopharmaceuticals has led to new substances for clinical use, as shown in first imaging studies in patients with advanced medullary thyroid cancer. The first clinical results suggest that the wider clinical implication of CCK2R-targeted radiopharmaceuticals is reasonable.


2009 ◽  
Vol 36 (9Part3) ◽  
pp. 4315-4316
Author(s):  
J Grimes ◽  
S Shcherbinin ◽  
A Celler ◽  
B Birkenfeld ◽  
MH Listewnik ◽  
...  

Author(s):  
Meshari Alnaaimi ◽  
Abdelmoneim Sulieman ◽  
Mohammed Alkhorayef ◽  
Hasan Salah ◽  
Musa Alduaij ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
pp. 626
Author(s):  
Julie Bolcaen ◽  
Shankari Nair ◽  
Cathryn H. S. Driver ◽  
Tebatso M. G. Boshomane ◽  
Thomas Ebenhan ◽  
...  

Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 599
Author(s):  
Stephen Ahenkorah ◽  
Irwin Cassells ◽  
Christophe M. Deroose ◽  
Thomas Cardinaels ◽  
Andrew R. Burgoyne ◽  
...  

In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.


2002 ◽  
Vol 17 (3) ◽  
pp. 267-280 ◽  
Author(s):  
Christine L. Hartmann Siantar ◽  
Kai Vetter ◽  
Gerald L. DeNardo ◽  
Sally J. DeNardo

Sign in / Sign up

Export Citation Format

Share Document