scholarly journals Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 599
Author(s):  
Stephen Ahenkorah ◽  
Irwin Cassells ◽  
Christophe M. Deroose ◽  
Thomas Cardinaels ◽  
Andrew R. Burgoyne ◽  
...  

In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.

Author(s):  
Stephen Ahenkorah ◽  
Irwin Cassells ◽  
Christophe M Deroose ◽  
Thomas Cardinaels ◽  
Andrew R Burgoyne ◽  
...  

Besides external high-energy photon or proton beam therapy, targeted radionuclide therapy (TRNT) is an alternative approach to deliver radiation to cancer cells. TRNT is distributed within the body by the vascular system and allows targeted irradiation of a primary tumor and all its metastases, resulting in substantially less collateral damage to normal tissues as compared to ex-ternal beam radiotherapy (EBRT). It is a systemic cancer therapy, tackling systemic spread of the disease, which is the cause of death in most cancer patients. The α-emitting radionuclide bis-muth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth, and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we will provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.


2022 ◽  
Author(s):  
Diana Melis ◽  
Andrew Burgoyne ◽  
Maarten Ooms ◽  
Gilles Gasser

Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of...


2018 ◽  
Vol 6 (47) ◽  
pp. 7985-7997 ◽  
Author(s):  
M. Toro-González ◽  
R. Copping ◽  
S. Mirzadeh ◽  
J. V. Rojas

Development of actinium-225 doped Gd0.8Eu0.2VO4 core–shell nanoparticles as multifunctional platforms for multimodal molecular imaging and targeted radionuclide therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 674
Author(s):  
Tyrillshall S. T. Damiana ◽  
Simone U. Dalm

In recent years, radionuclide therapy (RT) and targeted radionuclide therapy (TRT) have gained great interest in cancer treatment. This is due to promising results obtained in both preclinical and clinical studies. However, a complete response is achieved in only a small percentage of patients that receive RT or TRT. As a consequence, there have been several strategies to improve RT and TRT outcomes including the combination of these treatments with other well-established anti-cancer therapies, for example, chemotherapy. Combinations of RT and TRT with other therapies with distinct mechanisms of action represent a promising strategy. As for prostate cancer and breast cancer, the two most prevalent cancer types worldwide, several combination-based therapies have been evaluated. In this review, we will provide an overview of the RT and TRT agents currently used or being investigated in combination with hormone therapy, chemotherapy, immunotherapy, and external beam radiation therapy for the treatment of prostate cancer and breast cancer.


1986 ◽  
Author(s):  
B.J. Mijnheer ◽  
A.H.L. Aalbers ◽  
J.J.M. Van Gasteren ◽  
A.G. Visser ◽  
F.W. Wittkämper

2018 ◽  
Vol 24 (16) ◽  
pp. 1788-1800 ◽  
Author(s):  
Kye-Soo Cho ◽  
Seo-Jin Hong ◽  
Min-Hye Ahn ◽  
Sukdeb Pal ◽  
Pill-Hoon Choung ◽  
...  

Background: Cancer poses a major public health issue, is linked with high mortality rates across the world, and shows a strong interplay between genetic and environmental factors. To date, common therapeutics, including chemotherapy, immunotherapy, and radiotherapy, have made significant contributions to cancer treatment, although diverse obstacles for achieving the permanent “magic bullet” cure have remained. Recently, various anticancer therapeutic agents designed to overcome the limitations of these conventional cancer treatments have received considerable attention. One of these promising and novel agents is the siRNA delivery system; however, poor cellular uptake and altered siRNA stability in physiological environments have limited its use in clinical trials. Therefore, developing the ideal siRNA delivery system with low cytotoxicity, improved siRNA stability in the body’s circulation, and prevention of its rapid clearance from bodily fluids, is rapidly emerging as an innovative therapeutic strategy to combat cancer. Moreover, active targeting using ligand moieties which bind to over-expressed receptors on the surface of cancer cells would enhance the therapeutic efficiency of siRNA. Conclusion: In this review, we provide 1) an overview of the non-viral carrier associated with siRNA delivery for cancer treatment, and 2) a description of the five major cancer-targeting ligands.


2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


2020 ◽  
Vol 20 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Keywan Mortezaee ◽  
Masoud Najafi ◽  
Bagher Farhood ◽  
Amirhossein Ahmadi ◽  
Dheyauldeen Shabeeb ◽  
...  

Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.


Sign in / Sign up

Export Citation Format

Share Document