Pretargeted Theranostics

2021 ◽  
Author(s):  
Markus Staudt ◽  
Matthias M. Herth ◽  
Christian B.M. Poulie

Personalized medicine is becoming an integral part of our healthcare system, in which theranostics play a fundamental role. Nanomedicines such as monoclonal antibodies are a commonly used targeting vector in such approaches due to their outstanding targeting abilities as well as their capabilities to function as drug delivery vehicles. However, the application of nanomedicines in a clinical setting is connected with several challenges. For example, nanomedicines typically possess slow pharmacokinetics in respect to target accumulation and excretion. For targeted radionuclide therapy, this results in high radiation burden to healthy tissue. For drug delivery systems, long circulation and excretion times of the nanomedicine complicate site-specific release approaches and limit as such the usability of these strategies. One way to circumvent these challenges is the use of pretargeting strategies, which allow to separate the accumulation and excretion of nanomedicines from the actual diagnostic or therapeutic application. As such, pretargeting allows to use theranostic concepts utilizing the same nanomedicine and determine the success chances with diagnostic measures before initiating therapy. This chapter will explain the concept of pretargeted theranostics, which pretargeting systems have thus far been developed and compare how these systems performed.

2020 ◽  
Vol 21 (4) ◽  
pp. 1-20
Author(s):  
Arthi Jayaraman ◽  
Christopher Price ◽  
Millicent O. Sullivan ◽  
Kristi L. Kiick

Collagen-targeting strategies have proven to be an effective method for targeting drugs to pathological tissues for treatment of disease. The use of collagen-like peptides for controlling the assembly of drug delivery vehicles, as well as their integration into collagen-containing matrices, offers significant advantages for tuning the morphologies of assembled structures, their thermoresponsiveness, and the loading and release of both small-molecule and macro-molecular cargo. In this contribution, we summarize the design and development of collagen-peptide-based drug delivery systems introduced by the Kiick group and detail the expansion of our understanding and the application of these unique molecules through collaborations with experts in computational simulations (Jayaraman), osteoarthritis (Price), and gene delivery (Sullivan). Kiick was inducted as a Fellow of the National Academy of Inventors in 2019 and was to deliver an address describing the innovations of her research. Given the cancellation of the NAI Annual Meeting as a result of coronavirus travel restrictions, her work based on collagen-peptide-mediated assembly is instead summarized in this contribution.


2017 ◽  
Vol 8 (1) ◽  
pp. 97-126 ◽  
Author(s):  
John F. Quinn ◽  
Michael R. Whittaker ◽  
Thomas P. Davis

Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.


2020 ◽  
Vol 850 ◽  
pp. 213-218
Author(s):  
Elīza Tračuma ◽  
Dagnija Loca

Site specific drug delivery systems (DDS) are usually developed to overcome the side effects of conventional ones (e.g. injections or oral ingestions), creating smart drug delivery vehicles characterized with greater efficiency, safety, predictable therapeutic response as well as controlled and prolonged drug release periods. DDS made of hyaluronic acid (HA) and poly-L-lysine (PLL) are promising candidates in the field of local drug delivery due to their high biocompatibility. Moreover, electrostatic attractions between negatively charged HA and positively charged PLL can be used to fabricate multilayer films, bilayer films and hydrogels, avoiding the application of toxic crosslinking agents. In this review, we report the preparation of HA/PLL composites exploiting their intrinsic properties, as well as developed composite application possibilities as controlled drug delivery systems in bone tissue, central nervous system and gene engineering.


Nanomedicine ◽  
2020 ◽  
Vol 15 (27) ◽  
pp. 2707-2727
Author(s):  
Filippo Pinelli ◽  
Óscar Fullana Ortolà ◽  
Pooyan Makvandi ◽  
Giuseppe Perale ◽  
Filippo Rossi

In recent years, nanogels have emerged as promising drug delivery vehicles; their ability in holding active molecules, macromolecules and drugs, together with the capability to respond to external stimuli, makes them a suitable tool for a wide range of applications. These features allow nanogels to be exploited against many challenges of nanomedicine associated with different kinds of pathologies which require the use of specific drug delivery systems. In this review our aim is to give the reader an overview of the diseases that can be treated with nanogels as drug delivery systems, such as cancer, CNS disorders, cardiovascular diseases, wound healing and other diseases of human body. For all of these pathologies, biological in vivo assays can be found in the literature and in this work. We focus on the peculiarities of these nanogels, highlighting their features and their advantages in respect to conventional treatments.


RSC Advances ◽  
2014 ◽  
Vol 4 (33) ◽  
pp. 17028-17038 ◽  
Author(s):  
Zaheer Ahmad ◽  
Afzal Shah ◽  
Muhammad Siddiq ◽  
Heinz-Bernhard Kraatz

Though much progress has been made in drug delivery systems, the design of a suitable carrier for the delivery of hydrophobic drugs is still a major challenge for researchers.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Ana Ortega ◽  
Olga Martinez-Arroyo ◽  
Maria J. Forner ◽  
Raquel Cortes

Exosomes, nanometer-sized lipid-bilayer-enclosed extracellular vesicles (EVs), have attracted increasing attention due to their inherent ability to shuttle proteins, lipids and genes between cells and their natural affinity to target cells. Their intrinsic features such as stability, biocompatibility, low immunogenicity and ability to overcome biological barriers, have prompted interest in using exosomes as drug delivery vehicles, especially for gene therapy. Evidence indicates that exosomes play roles in both immune stimulation and tolerance, regulating immune signaling and inflammation. To date, exosome-based nanocarriers delivering small molecule drugs have been developed to treat many prevalent autoimmune diseases. This review highlights the key features of exosomes as drug delivery vehicles, such as therapeutic cargo, use of targeting peptide, loading method and administration route with a broad focus. In addition, we outline the current state of evidence in the field of exosome-based drug delivery systems in systemic lupus erythematosus (SLE), evaluating exosomes derived from various cell types and engineered exosomes.


2018 ◽  
Vol 18 (5) ◽  
pp. 439-457 ◽  
Author(s):  
Merina Mariyam ◽  
Kajal Ghosal ◽  
Sabu Thomas ◽  
Nandakumar Kalarikkal ◽  
Mahima S. Latha

2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 427
Author(s):  
Amin Mirzaaghasi ◽  
Yunho Han ◽  
So-Hee Ahn ◽  
Chulhee Choi ◽  
Ji-Ho Park

Exosomes have attracted considerable attention as drug delivery vehicles because their biological properties can be utilized for selective delivery of therapeutic cargoes to disease sites. In this context, analysis of the in vivo behaviors of exosomes in a diseased state is required to maximize their therapeutic potential as drug delivery vehicles. In this study, we investigated biodistribution and pharmacokinetics of HEK293T cell-derived exosomes and PEGylated liposomes, their synthetic counterparts, into healthy and sepsis mice. We found that biodistribution and pharmacokinetics of exosomes were significantly affected by pathophysiological conditions of sepsis compared to those of liposomes. In the sepsis mice, a substantial number of exosomes were found in the lung after intravenous injection, and their prolonged blood residence was observed due to the liver dysfunction. However, liposomes did not show such sepsis-specific effects significantly. These results demonstrate that exosome-based therapeutics can be developed to manage sepsis and septic shock by virtue of their sepsis-specific in vivo behaviors.


Sign in / Sign up

Export Citation Format

Share Document